Mycophenolic acid (MPA) is the active ingredient in the increasingly important immunosuppressive pharmaceuticals CellCept (Roche) and Myfortic (Novartis). Despite the long history of MPA, the molecular basis for its biosynthesis has remained enigmatic. Here we report the discovery of a polyketide synthase (PKS), MpaC, which we successfully characterized and identified as responsible for MPA production in Penicillium brevicompactum. mpaC resides in what most likely is a 25-kb gene cluster in the genome of Penicillium brevicompactum. The gene cluster was successfully localized by targeting putative resistance genes, in this case an additional copy of the gene encoding IMP dehydrogenase (IMPDH). We report the cloning, sequencing, and the functional characterization of the MPA biosynthesis gene cluster by deletion of the polyketide synthase gene mpaC of P. brevicompactum and bioinformatic analyses. As expected, the gene deletion completely abolished MPA production as well as production of several other metabolites derived from the MPA biosynthesis pathway of P. brevicompactum. Our work sets the stage for engineering the production of MPA and analogues through metabolic engineering.
Assigning functions to newly discovered genes constitutes one of the major challenges en route to fully exploiting the data becoming available from the genome sequencing initiatives. Heterologous expression in an appropriate host is central in functional genomics studies. In this context, filamentous fungi offer many advantages over bacterial and yeast systems. To facilitate the use of filamentous fungi in functional genomics, we present a versatile cloning system that allows a gene of interest to be expressed from a defined genomic location of Aspergillus nidulans. By a single USER cloning step, genes are easily inserted into a combined targeting-expression cassette ready for rapid integration and analysis. The system comprises a vector set that allows genes to be expressed either from the constitutive PgpdA promoter or from the inducible PalcA promoter. Moreover, by using the vector set, protein variants can easily be made and expressed from the same locus, which is mandatory for proper comparative analyses. Lastly, all individual elements of the vectors can easily be substituted for other similar elements, ensuring the flexibility of the system. We have demonstrated the potential of the system by transferring the 7,745-bp large mpaC gene from Penicillium brevicompactum to A. nidulans. In parallel, we produced defined mutant derivatives of mpaC, and the combined analysis of A. nidulans strains expressing mpaC or mutated mpaC genes unequivocally demonstrated that mpaC indeed encodes a polyketide synthase that produces the first intermediate in the production of the medically important immunosuppressant mycophenolic acid.
Background Aspergillus nidulans is an important model organism for studies on fundamental eukaryotic cell biology and on industrial processes due to its close relation to A. niger and A. oryzae. Here we identified the gene coding for a novel metabolic pathway in A. nidulans, namely the phosphoketolase pathway, and investigated the role of an increased phosphoketolase activity.Methodology/Principal FindingsOver-expression of the phosphoketolase gene (phk) improved the specific growth rate on xylose, glycerol and ethanol. Transcriptome analysis showed that a total of 1,222 genes were significantly affected by over-expression of the phk, while more than half of the affected genes were carbon source specific. During growth on glucose medium, the transcriptome analysis showed that the response to phk over-expression is targeted to neutralize the effect of the over-expression by regulating the acetate metabolism and initiate a growth dampening response.Conclusions/SignificanceMetabolic flux analysis using 13C-labelled glucose, showed that over-expression of phosphoketolase added flexibility to the central metabolism. Our findings further suggests that A. nidulans is not optimized for growth on xylose, glycerol or ethanol as the sole carbon sources.
Many filamentous fungi produce polyketide molecules with great significance as human pharmaceuticals; these molecules include the cholesterol-lowering compound lovastatin, which was originally isolated from Aspergillus terreus. The chemical diversity and potential uses of these compounds are virtually unlimited, and it is thus of great interest to develop a well-described microbial production platform for polyketides. Using genetic engineering tools available for the model organism Aspergillus nidulans, we constructed two recombinant strains, one expressing the Penicillium griseofulvum 6-methylsalicylic acid (6-MSA) synthase gene and one expressing the 6-MSA synthase gene and overexpressing the native xylulose-5-phosphate phosphoketolase gene (xpkA) for increasing the pool of polyketide precursor levels. The physiology of the recombinant strains and that of a reference wild-type strain were characterized on glucose, xylose, glycerol, and ethanol media in controlled bioreactors. Glucose was found to be the preferred carbon source for 6-MSA production, and 6-MSA concentrations up to 455 mg/liter were obtained for the recombinant strain harboring the 6-MSA gene. Our findings indicate that overexpression of xpkA does not directly improve 6-MSA production on glucose, but it is possible, if the metabolic flux through the lower part of glycolysis is reduced, to obtain quite high yields for conversion of sugar to 6-MSA. Systems biology tools were employed for in-depth analysis of the metabolic processes. Transcriptome analysis of 6-MSA-producing strains grown on glucose and xylose in the presence and absence of xpkA overexpression, combined with flux and physiology data, enabled us to propose an xpkA-msaS interaction model describing the competition between biomass formation and 6-MSA production for the available acetyl coenzyme A.Natural products from microbial, plant, marine, and even mammalian sources have traditionally been a major drug source and continue to play a significant role in today's drug discovery environment. Approximately 40% of new drugs introduced between the mid-1980s and 1990s originated from natural molecules, whereas 9 of the top 20 small-molecule drugs introduced in 1999 were developed from natural products (13). Polyketide natural products play an important role in the treatment of a wide range of human physiological disorders. They are widely used as antimicrobial (erythromycin, rifamycin, tetracycline), antifungal (amphotericin B), immunosuppressant (tacrolimus [TK506], rapamycin), and anticancer (doxorubicin, epothilone, geldanamycin) agents, as well as cholesterol-lowering agents (lovastatin). Current chemical technologies are in most cases unable to generate commercial quantities of most polyketide compounds. As a result, the natural sources of these compounds, usually bacteria and fungi, are employed as biocatalysts for large-scale production. Additionally, in the past two decades heterologous expression of polyketide genes has become possible by the explosive growth in the cloning and seq...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.