This paper discusses what chemistry students might see while working with animations found on the Internet and how these electronic illustrations can potentially interact to reinforce rather than resolve misconceptions about chemical principles that a student may possess. The Daniell voltaic cell serves as an example to illustrate the ways in which visual aids can be interpreted differently by different people. Some illustrations seem to represent concepts which have repeatedly been discussed on the base of science education research evidence as typical student misconceptions about chemical concepts. These visual aids seem to embody the actual misconceptions of chemical principles rather than explaining the scientifically accepted chemical concepts behind them. This paper discusses whether such computer simulations are potentially helpful for better understanding, or whether they actually increase the risk of strengthening students' incorrect interpretations or false ideas about chemical concepts. Implications for structuring and using animations are discussed.
Large advances in technology in the last few years have made computers cheap and presentation technologies easily available in most secondary schools, at least in industrialised countries. Due to recent developments in software technology nearly anyone can create animations and visualisations. The Internet has helped to make the distribution of such graphic tools both wide and fast. Thus, using multimedia in science teaching is becoming more and more common. Today, integrating visualisations and animations from the Internet into the science classroom seems an obvious choice for enhancing science lessons. But are all of the animations offered on the Internet really helpful for promoting understanding? This chapter discusses what might occur while working with animations taken from the Internet and how these multimedia illustrations can potentially interact to reinforce rather than resolve students’ misconceptions about chemical principles. Daniell’s voltaic cell serves as a good example to illustrate the ways in which visual aids can be interpreted differently by experts and novices. The following discussion takes place in the form of an exaggerated example. It is meant to appear as a critical interjection making readers more aware of the myriad, often invisible, potential drawbacks which exist when first selecting promising-looking animated illustrations for classroom use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.