We reanalyze the proton decay in the minimal SU(5) SUGRA GUT model. Unlike previous analyses, we take into account a Higgsino dressing diagram of dimension 5 operator with right-handed matter fields (RRRR operator). It is shown that this diagram gives a dominant contribution for p → K + ν τ over that from LLLL operator, and decay rate of this mode can be comparable with that of p → K + ν µ which is dominated by the LLLL contribution. It is found that we cannot reduce both the decay rate of p → K + ν τ and that of p → K + ν µ simultaneously by adjusting relative phases between Yukawa couplings at colored Higgs interactions. Constraints on the colored Higgs mass M C and a typical squark and slepton mass mf from Super-Kamiokande limit become considerably stronger due to the Higgsino dressing diagram of the RRRR operator: M C > 6.5 × 10 16 GeV for mf < 1 TeV, and mf > 2.5 TeV for M C < 2.5 × 10 16 GeV.
The Supersymmetry Les Houches Accord (SLHA) provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalisations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavour, as well as the simplest next-to-minimal model. IntroductionSupersymmetric (SUSY) extensions of the Standard Model rank among the most promising and well-explored scenarios for New Physics at the TeV scale. Given the long history of supersymmetry and the number of people working in the field, several different conventions for defining supersymmetric theories have been proposed over the years, many of which have come into widespread use. At present, therefore, no unique set of conventions prevails. In principle, this is not a problem. As long as everything is clearly and consistently defined, a translation can always be made between two sets of conventions. However, the proliferation of conventions does have some disadvantages. Results obtained by different authors or computer codes are not always directly comparable. Hence, if author/code A wishes to use the results of author/code B in a calculation, a consistency check of all the relevant conventions and any necessary translations must first be made -a tedious and error-prone task.To deal with this problem, and to create a more transparent situation for non-experts, the original SUSY Les Houches Accord (SLHA1) was proposed [1]. This accord uniquely defines a set of conventions for supersymmetric models together with a common interface between codes. The most essential fact is not what the conventions are in detail (they largely resemble those of [2]), but that they are consistent and unambiguous, hence reducing the problem of translating between conventions to a linear, rather than a factorial, dependence on the number of codes involved. At present, these codes can be categorised roughly as follows (see [3,4] for a review and on-line repository):• Spectrum calculators [5][6][7][8], which calculate the supersymmetric mass and coupling spectrum, assuming some (given or derived) SUSY-breaking terms and a matching to known data on the Standard Model parameters.• Observables calculators [9][10][11][12][13][14][15][16][17][18][19]; packages which calculate one or more of the following: collider production cross sections (cross section calculators), decay partial widths (decay packages), relic dark matter density (dark matter packages), and indirect/precision observables, such as rare decay branching ratios or Higgs/electroweak observables (constraint packages).• Monte-Carlo event generators [20][21][22][23][24][25][26][27][28], which calculate cross sections through explicit statistical simulation of high-energy particle collisions. By including resonance decays, parton showering, hadronisation, and underlying-event effects, fully exclusive final states can be studied, and, for instance, ...
In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved; apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In the past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K, D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments; thus a review of the status of quark flavor physics is timely. This report is the result of the work of physicists attending the 5th CKM workshop, hosted by the University of Rome "La Sapienza", September 9-13, 2008. It summarizes the results of the current generation of experiments that are about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade. (C) 2010 Elsevier B.V. All rights reserved
We have searched for intermediate-scale anisotropy in the arrival directions of ultrahigh-energy cosmic rays with energies above 57 EeV in the northern sky using data collected over a 5 yr period by the surface detector of the Telescope Array experiment. We report on a cluster of events that we call the hotspot, found by oversampling using 20 • radius circles. The hotspot has a Li-Ma statistical significance of 5.1σ , and is centered at R.A. = 146. • 7, decl. = 43. • 2. The position of the hotspot is about 19 • off of the supergalactic plane. The probability of a cluster of events of 5.1σ significance, appearing by chance in an isotropic cosmic-ray sky, is estimated to be 3.7 × 10 −4 (3.4σ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.