Aims Cardiac rehabilitation (CR) is an evidence-based, secondary preventive strategy that improves mortality and morbidity rates in patients with heart failure (HF). However, the implementation and continuation of CR remains unsatisfactory, particularly for outpatients with physical frailty. This study investigated the efficacy and safety of a comprehensive home-based cardiac rehabilitation (HBCR) programme that combines patient education, exercise guidance, and nutritional guidance using information and communication technology (ICT). Methods and resultsThis study was a single-centre, open-label, randomized, controlled trial. Between April 2020 and November 2020, 30 outpatients with chronic HF (New York Heart Association II-III) and physical frailty were enrolled. The control group (n = 15) continued with standard care, while the HBCR group (n = 15) also received comprehensive, individualized CR, including ICT-based exercise and nutrition guidance using ICT via a Fitbit® device for 3 months. The CR team communicated with each patient in HBCR group once a week via the application messaging tool and planned the training frequency and intensity of training individually for the next week according to each patient's symptoms and recorded pulse data during exercise. Dietitians conducted a nutritional assessment and then provided individual nutritional advice using the picture-posting function of the application. The primary outcome was the change in the 6 min walking distance (6MWD). The participants' mean age was 63.7 ± 10.1 years, 53% were male, and 87% had non-ischaemic heart disease. The observed change in the 6MWD was significantly greater in the HBCR group (52.1 ± 43.9 m vs. À4.3 ± 38.8 m; P < 0.001) at a 73% of adherence rate. There was no significant change in adverse events in either group. Conclusions Our comprehensive HBCR programme using ICT for HF patients with physical frailty improved exercise tolerance and improved lower extremity muscle strength in our sample, suggesting management with individualized ICT-based programmes as a safe and effective approach. Considering the increasing number of HF patients with frailty worldwide, our approach provides an efficient method to keep patients engaged in physical activity in their daily life.
The arthropod cuticle functions principally as an exoskeleton covering the total body surface, and is a highly organized structure produced by extracellular secretion from the epidermis. It is constructed as a composite consisting of chitin filaments (a homopolymer of N-acetyl glucosamines conjugated by b-1,4 linkages), structural proteins, lipids, catecholamine derivatives, and minerals. Its structural properties, however, vary among species and also according to surface location and developmental stage in individuals [1][2][3]. The mechanical properties of the cuticle depend on the content of chitin, the microarchitecture of chitin filaments, and the interaction between the chitinfilament system and cuticular proteins. Furthermore, the cuticle can be modified by sclerotization, namely the oxidative incorporation of o-diphenols into cuticular Arthropod cuticles play an important role as the first barrier against invading pathogens. We extensively determined the sequences of horseshoe crab cuticular proteins. Proteins extracted from a part of the ventral side of the cuticle were purified by chitin-affinity chromatography, and separated by two-dimensional SDS ⁄ PAGE. Proteins appearing on the gel were designated high molecular mass chitin-binding proteins, and these proteins were then grouped into classes based on their approximate isoelectric points and predominant amino acid compositions. Members of groups designated basic G, basic Y, and acidic S groups contained a so-called Rebers and Riddiford consensus found in arthropod cuticular proteins. Proteins designated acidic DE25 and DE29 each contained a Cys-rich domain with sequences similar to those of insect peritrophic matrix proteins and chitinases. In contrast, basic QH4 and QH10 contained no consensus sequences found in known chitin-binding proteins. Alternatively, a low molecular mass chitin-binding fraction was prepared by size exclusion chromatography, and 15 low molecular mass chitin-binding proteins, named P1 through P15, were isolated. With the exception of P9 and P15, all were found to be identical to known antimicrobial peptides. P9 consisted of a Kunitz-type chymotrypsin inhibitor sequence, and P15 contained a Cys-rich motif found in insulin-like growth factor-binding proteins. Interestingly, we observed transglutaminase-dependent polymerization of nearly all high molecular mass chitin-binding proteins, a finding suggests that transglutaminase-dependent cross-linking plays an important role in host defense in the arthropod cuticle, analogous to that observed in the epidermal cornified cell envelope in mammals.
A 69-year-old man was hospitalized for heart failure 7 days after coronavirus disease 2019 (COVID-19) mRNA vaccination. Electrocardiography showed ST-segment elevation and echocardiography demonstrated severe left ventricular dysfunction. Venoarterial extracorporeal membrane oxygenation and Impella 5.0 were instituted because of cardiogenic shock and ventricular fibrillation. Endomyocardial biopsy demonstrated necrotizing eosinophilic myocarditis (NEM). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) PCR test was negative. He had no infection or history of new drug exposure. NEM was likely related to COVID-19 vaccination. He was administered 10 mg/kg of prednisolone following methylprednisolone pulse treatment (1000 mg/day for 3 days). Left ventricular function recovered and he was weaned from mechanical circulatory support (MCS). Follow-up endomyocardial biopsy showed no inflammatory cell infiltration. This is the first report of biopsy-proven NEM after COVID-19 vaccination survived with MCS and immunosuppression therapy. It is a rare condition but early, accurate diagnosis and early aggressive intervention can rescue patients.
Eosinophilic granulomatosis with polyangiitis (EGPA) is a systemic vasculitis involving small-to-medium-sized vessels characterized by asthma, vasculitis, and peripheral eosinophilia. EGPA-associated eosinophilic myocarditis (EM) occurs rarely, yet can be fatal if left untreated. Moreover, the accurate diagnosis of EGPA-associated EM without vasculitis is exceptionally difficult because of the overlapping features with EM of other causes. We report a case of probable EGPA with subclinical neurological involvement that presented with acute EM. The constellation of peripheral eosinophilia, left ventricular dysfunction, and normal epicardial coronary arteries raised suspicion of acute EM, which was confirmed by cardiac magnetic resonance (CMR) investigation and endomyocardial biopsy (EMB). Prompt systemic administration of corticosteroids completely restored and normalized myocardial structure and function. Although the patient's history suggested the presumed hypersensitivity myocarditis, EMB revealed EM without vasculitis, not hypersensitivity, leading to a tentative diagnosis of idiopathic hypereosinophilic syndrome. Interestingly, the characteristic findings of vasculitis on CMR imaging strongly suggested EGPA-associated EM. Although the patient had no clinical neurological manifestations, a nerve conduction study confirmed mononeuritis multiplex, leading to the final diagnosis of probable EGPA. Therefore, this case highlights the diagnostic challenge associated with EGPA and the diagnostic synergy of CMR and EMB for an exploratory diagnosis of EGPA-associated EM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.