Oncolytic viral therapy has been accepted as a standard immunotherapy since talimogene laherparepvec (T-VEC, Imlygic®) was approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for melanoma treatment in 2015. Various oncolytic viruses (OVs), such as HF10 (Canerpaturev—C-REV) and CVA21 (CAVATAK), are now actively being developed in phase II as monotherapies, or in combination with immune checkpoint inhibitors against melanoma. Moreover, in glioma, several OVs have clearly demonstrated both safety and a promising efficacy in the phase I clinical trials. Additionally, the safety of several OVs, such as pelareorep (Reolysin®), proved their safety and efficacy in combination with paclitaxel in breast cancer patients, but the outcomes of OVs as monotherapy against breast cancer have not provided a clear therapeutic strategy for OVs. The clinical trials of OVs against pancreatic cancer have not yet demonstrated efficacy as either monotherapy or as part of combination therapy. However, there are several oncolytic viruses that have successfully proved their efficacy in different preclinical models. In this review, we mainly focused on the oncolytic viruses that transitioned into clinical trials against melanoma, glioma, pancreatic, and breast cancers. Hence, we described the current status and future prospects of OVs clinical trials against melanoma, glioma, pancreatic, and breast cancers.
Oncolytic viruses (OVs) are opening new possibilities in cancer therapy with their unique mechanism of selective replication within tumor cells and triggering of antitumor immune responses. HF10 is an oncolytic herpes simplex virus-1 with a unique genomic structure that has non-engineered deletions and insertions accompanied by frame-shift mutations, in contrast to the majority of engineered OVs. At the genetic level, HF10 naturally lacks the expression of UL43, UL49.5, UL55, UL56, and latency-associated transcripts, and overexpresses UL53 and UL54. In preclinical studies, HF10 replicated efficiently within tumor cells with extensive cytolytic effects and induced increased numbers of activated CD4+ and CD8+ T cells and natural killer cells within the tumor, leading to a significant reduction in tumor growth and prolonged survival rates. Investigator-initiated clinical studies of HF10 have been completed in recurrent breast carcinoma, head and neck cancer, and unresectable pancreatic cancer in Japan. Phase I trials were subsequently completed in refractory superficial cancers and melanoma in the United States. HF10 has been demonstrated to have a high safety margin with low frequency of adverse effects in all treated patients. Interestingly, HF10 antigens were detected in pancreatic carcinoma over 300 days after treatment with infiltration of CD4+ and CD8+ T cells, which enhanced the immune response. To date, preliminary results from a Phase II trial have indicated that HF10 in combination with ipilimumab (anti-CTLA-4) is safe and well tolerated, with high antitumor efficacy. Improvement of the effect of ipilimumab was observed in patients with stage IIIb, IIIc, or IV unresectable or metastatic melanoma. This review provides a concise description of the genomic functional organization of HF10 compared with talimogene laherparepvec. Furthermore, this review focuses on HF10 in cancer treatment as monotherapy as well as in combination therapy through a concise description of all preclinical and clinical data. In addition, we will address approaches for future directions in HF10 studies as cancer therapy.
BackgroundPrognosis of pancreatic cancer is poor with a 5-year survival rate of only 7%. Although several new chemotherapy treatments have shown promising results, all patients will eventually progress, and we need to develop newer chemotherapy treatments to improve response rates and overall survival (OS). HF10 is a spontaneously mutated oncolytic virus derived from a herpes simplex virus-1, and it has potential to show strong antitumor effect against malignancies without damaging normal tissue. We aimed to evaluate the safety and anti-tumor effectiveness in phase I dose-escalation trial of direct injection of HF10 into unresectable locally advanced pancreatic cancer under endoscopic ultrasound (EUS)-guidance in combination with erlotinib and gemcitabine administration. The mid-term results have been previously reported and here we report the final results of our study.MethodsThis was a single arm, open-label Phase I trial. HF10 was injected once every 2 weeks and continued up to four times in total unless dose-limiting toxicity (DLT) appears. A total of nine subjects in three Cohorts with dose-escalation were planned to be enrolled in this trial. The primary endpoint was the safety assessment and the secondary endpoint was the efficacy assessment.ResultsTwelve patients enrolled in this clinical trial, and ten subjects received this therapy. Five patients showed Grade III myelosuppression and two patients developed serious adverse events (AEs) (perforation of duodenum, hepatic dysfunction). However, all of these events were judged as AEs unrelated to HF10. Tumor responses were three partial responses (PR), four stable diseases (SD), and two progressive diseases (PD) out of nine subjects who completed the treatment. Target lesion responses were three PRs and six SDs. The median progression free survival (PFS) was 6.3 months, whereas the median OS was 15.5 months. Two subjects from Cohort 1 and 2 showed downstaging and finally achieved surgical complete response (CR).ConclusionsHF10 direct injection under EUS-guidance in combination with erlotinib and gemcitabine was a safe treatment for locally advanced pancreatic cancer. Combination therapy of HF10 and chemotherapy should be explored further in large prospective studies. Trial registration: This study was prospectively registered in UMIN-CTR (UMIN000010150) on March 4th, 2013.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4453-z) contains supplementary material, which is available to authorized users.
Breast cancer is one of the most common and feared cancers faced by women. The prognosis of patients with advanced or recurrent breast cancer remains poor despite refinements in multimodality therapies involving chemotherapeutic and hormonal agents. Multimodal therapy with more specific and effective strategy is urgently needed. The oncolytic herpes simplex virus (HSV) has potential to become a new effective treatment option because of its broad host range and tumor selective viral distribution. Bevacizumab is a monoclonal antibody against VEGFA, which inhibits angiogenesis and therefore tumor growth. Our approach to enhance the antitumor effect of the oncolytic HSV is to combine oncolytic HSV HF10 and bevacizumab in the treatment of breast cancer. Our results showed that bevacizumab enhanced viral distribution as well as tumor hypoxia and expanded the population of apoptotic cells and therefore induced a synergistic antitumor effect. HF10 is expected to be a promising agent in combination with bevacizumab in the anticancer treatment.Breast cancer is one of the most common and feared cancers faced by women worldwide. According to the latest statistics on cancer, breast cancer has already been the second leading cause of death for women in the United States. 1 However, the treatment of patients who are diagnosed at an advanced stage and curative surgical treatments are sometimes difficult due to the presence of recurrence and metastases. Furthermore, the long-term prognosis of curatively resected advanced breast cancer remains unsatisfactory because of its high recurrence rate after surgery. Currently, the available chemotherapeutic reagents have only limited efficacy against these recurrent diseases. In particular, the prognosis of patients with advanced or recurrent breast cancer remains poor despite refinements in multimodality therapies involving chemotherapeutic and hormonal agents. 1-7 Multimodal therapy with more specific and effective strategy is urgently needed.So far, the increasing evidence from preclinical and clinical data suggests that the oncolytic viral therapy could be an effective therapeutic modality in the treatment of advanced cancer. Various strains of viruses, such as adenovirus, herpes simplex virus, Newcastle disease virus, measles virus, vesicular stomatitis virus and vaccinia virus are being evaluated for their oncolytic capability and many of them have already progressed to the clinical trial phase. Among them, the oncolytic herpes simplex virus (HSV) is an ideal candidate because of its broad host range, tumor selective viral distribution and the characteristic of being controlled by antiviral drugs. 6-9 HF10 is a highly attenuated, replication-competent mutant strain of HSV-1 and displays strong tumor killing activity in vivo and in vitro. [10][11][12] We previously performed a phase I dose-escalation clinical trial using HF10 for the patients with recurrent breast cancer or unresectable pancreatic cancer and demonstrated its safety and efficacy. 13,14 However, studies with the oncol...
The naturally occurring oncolytic herpes simplex virus canerpaturev (C-REV), formerly HF10, proved its therapeutic efficacy and safety in multiple clinical trials against melanoma, pancreatic, breast, and head and neck cancers. Meanwhile, patients with colorectal cancer, which has increased in prevalence in recent decades, continue to have poor prognosis and morbidity. Combination therapy has better response rates than monotherapy. Hence, we investigated the antitumor efficacy of cetuximab, a widely used anti-epidermal growth factor receptor (EGFR) monoclonal antibody, and C-REV, either alone or in combination, in vitro and in an in vivo human colorectal xenograft model. In human colorectal cancer cell lines with different levels of EGFR expression (HT-29, WiDr, and CW2), C-REV exhibited cytotoxic effects in a time- and dose-dependent manner, irrespective of EGFR expression. Moreover, cetuximab had no effect on viral replication in vitro . Combining cetuximab and C-REV induced a synergistic antitumor effect in HT-29 tumor xenograft models by promoting the distribution of C-REV throughout the tumor and suppressing angiogenesis. Application of cetuximab prior to C-REV yielded better tumor regression than administration of the drug after the virus. Thus, cetuximab represents an ideal virus-associated agent for antitumor therapy, and combination therapy represents a promising antitumor strategy for human colorectal cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.