Cytokines manifest their function through alteration of gene expression. However, target genes for signals from cytokine receptors are largely unknown. We therefore searched for immediate‐early cytokine‐responsive genes and isolated a novel gene, CIS (cytokine inducible SH2‐containing protein) which is induced in hematopoietic cells by a subset of cytokines including interleukin 2 (IL2), IL3, granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) and erythropoietin (EPO), but not by stem cell factor, granulocyte colony‐stimulating factor and IL6. The CIS message encodes a polypeptide of 257 amino acids that contains an SH2 domain of 96 amino acids in the middle. To clarify the function of CIS in cytokine signal transduction, we expressed CIS in IL3‐dependent hematopoietic cell lines under the control of a steroid‐inducible promoter. The CIS product stably associated with the tyrosine‐phosphorylated beta chain of the IL3 receptor as well as the tyrosine‐phosphorylated EPO receptor. Forced expression of CIS by steroid reduced the growth rate of these transformants, suggesting a negative role of CIS in signal transduction. CIS induction requires the membrane‐proximal region of the cytoplasmic domain of the EPO receptor as well as that of the common beta chain of the IL3, IL5 and GM‐CSF receptor, whereas CIS binds to the receptor that is tyrosine phosphorylated by cytokine stimulation. Thus CIS appears to be a unique regulatory molecule for cytokine signal transduction.
Tumor protein p53 (TP53) is the most frequently mutated gene in cancer 1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease 3,4 , rapid transformation to acute myeloid leukemia (AML) 5 , resistance to conventional therapies 6-8 and dismal outcomes 9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono-and biallelic mutations 10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R) 11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response. In collaboration with the International Working Group for Prognosis in MDS (Supplementary Table 1), we assembled a cohort of 3,324 peridiagnostic and treatment-naive patients with MDS or closely related myeloid neoplasms (Extended Data Fig. 1 and Supplementary Fig. 1). Genetic profiling included conventional G-banding analyses (CBA) and tumor-only, capture-based, next-generation sequencing (NGS) of a panel of genes recurrently mutated in MDS, as well as genome-wide copy number probes. Allele-specific copy number profiles were generated from NGS data using the CNACS algorithm 7 (see Methods and Code availability). An additional 1,120 samples derived from the Japanese MDS consortium (Extended Data Fig. 2) were used as a validation cohort. To study the effect of TP53 allelic state on genome stability, clinical presentation, outcome and response to therapy, we performed a detailed characterization of alterations at the TP53 locus. First, we assessed genome-wide allelic imbalances in the cohort of 3,324 patients, to include arm-level or focal (~3 Mb) ploidy alterations and regions of copy-neutral loss of heterozygosity (cnLOH) (Extended Data Fig. 3, Supplementary Figs. 2-4 and Methods).
To clarify the cooperative roles of recurrently identified mutations and to establish a more precise risk classification system in acute myeloid leukemia (AML), we comprehensively analyzed mutations in 51 genes, as well as cytogenetics and 11 chimeric transcripts, in 197 adult patients with de novo AML who were registered in the Japan Adult Leukemia Study Group AML201 study. We identified a total of 505 mutations in 44 genes, while only five genes, FLT3, NPM1, CEBPA, DNMT3A and KIT, were mutated in more than 10% of the patients. Although several cooperative and exclusive mutation patterns were observed, the accumulated mutation number was higher in cytogenetically normal AML and lower in AML with RUNX1-RUNX1T1 and CBFB-MYH11, indicating a strong potential of these translocations for the initiation of AML. Furthermore, we evaluated the prognostic impacts of each sole mutation and the combinations of mutations and/or cytogenetics, and demonstrated that AML patients could be clearly stratified into five risk groups for overall survival by including the mutation status of DNMT3A, MLL-PTD and TP53 genes in the risk classification system of the European LeukemiaNet. These results indicate that the prognosis of AML could be stratified by the major mutation status in combination with cytogenetics.
Germline DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here, enrolling a total of 346 patients with DDX41 pathogenic/likely pathogenic (P/LP) germline variants and/or somatic mutations from 9,082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients, we performed a comprehensive characterization of DDX41-mutated MNs. P/LP DDX41 germline variants explained ~80% of known germline predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n=4,461) compared to a Japanese general population (n=20,238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs. 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years old but rapidly increased to 49% by 90 years of age. DDX41-mutated MDS patients rapidly progressed to AML, which was, however, confined to those having truncating variants. Co-mutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and -WT cases, where none of the co-mutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multi-hit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System (IPSS-R/M). Our findings establish that DDX41-mutated MDS defines a unique subtype of MNs that is distinct from other MNs.
The objective of this prospective clinical trial (JALSG-STIM213, UMIN000011971) was to evaluate treatment-free remission (TFR) rates after discontinuation of imatinib in chronic myeloid leukemia (CML). CML patients who received imatinib treatment for at least 3 years and sustained deep molecular response for at least 2 years were eligible. Molecular recurrence was defined as loss of major molecular response (MMR). Of the 68 eligible patients, 38.2% were women, the median age was 55.0 years, and the median duration of imatinib treatment was 97.5 months. The 12-month TFR rate was 67.6%. Patients who lost MMR were immediately treated with imatinib again; all re-achieved MMR. Three-year treatment-free survival (TFS) was estimated as 64.6% using the Kaplan-Meier method. Undetectable molecular residual disease (UMRD) was defined as no BCR-ABL1 in > 100,000 ABL1 control genes using international scale polymerase chain reaction. UMRD at the study baseline was found to be predictive of continuation of TFR. Our findings suggest that CML patients who meet all the eligibility criteria that have commonly been used in the TFR trials are able to discontinue imatinib use safely. TFR may thus be valuable as a new goal for CML treatment in Japan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.