A halophilic archaeon, Haloarcula sp. strain S-1, produced extracellular organic solvent-tolerant alpha-amylase. Molecular mass of the enzyme was estimated to be 70 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This amylase exhibited maximal activity at 50 degrees C in buffer containing 4.3 M NaCl, pH 7.0. Moreover, the enzyme was active and stable in various organic solvents (benzene, toluene, and chloroform, etc.). Activity was not detected at low ionic strengths, but it was detected in the presence of chloroform at low salt concentrations. On the other hand, no activity was detected in the presence of ethyl alcohol and acetone.
Phytosynthesis of nanomaterials is advantageous since it is economical, ecofriendly, and simple, and, what is more, in the synthetic protocols, nontoxic chemicals and biocompatible materials are used. Here, a green synthetic methodology of nanoparticles (NPs) composed of silver (Ag) and silver chloride (AgCl) NPs is developed using a leaf extract of Solidago altissima as a reducing agent for the first time. Utilization of a terrestrial weed for the synthesis of Ag and AgCl NPs is a novel environmentally friendly approach considering that no toxic chemicals, external halide source, or elaborate experimental procedures are included in the process. The optical properties and elemental compositions of as-synthesized Ag and AgCl NPs are well characterized, and the degradation of an organic dye, i.e., rhodamine B (RhB), is investigated using the Ag and AgCl NPs. We find that degradation of RhB is effectively achieved thanks to both surface plasmon resonance and semiconductor properties of Ag and AgCl NPs. The surface-enhanced Raman scattering and antibacterial activities are also examined. The present approach to the synthesis of NPs using a weed may encourage the utilization of hazardous plants for the creation of novel nanomaterials.
Novel PLGA–MOR–CTX nano formulation with CTX as a targeting ligand and morusin loaded PLGA NPs as a highly potent system to curb glioma cell proliferation.
Strain YSM-123T was isolated from commercial salt made from Japanese seawater in Niigata prefecture. Optimal NaCl and Mg2+ concentrations for growth were 4.0–4.5 M and 5 mM, respectively. The isolate was a mesophilic and slightly alkaliphilic haloarchaeon, whose optimal growth temperature and pH were 37 °C and pH 8.0–9.0. Phylogenetic analysis based on 16S rRNA gene sequence analysis suggested that strain YSM-123T is a member of the phylogenetic group defined by the family Halobacteriaceae, but there were low similarities to type strains of other genera of this family (≤90 %); for example, Halococcus (similarity <89 %), Halostagnicola (<89 %), Natronolimnobius (<89 %), Halobiforma (<90 %), Haloterrigena (<90 %), Halovivax (<90 %), Natrialba (<90 %), Natronobacterium (<90 %) and Natronococcus (<90 %). The G+C content of the DNA was 63 mol%. Polar lipid analysis revealed the presence of phosphatidylglycerol, phosphatidylglycerophosphate methyl ester, disulfated diglycosyl diether and an unknown glycolipid. On the basis of the data presented, we propose that strain YSM-123T should be placed in a new genus and species, Natronoarchaeum mannanilyticum gen. nov., sp. nov. The type strain of Natronoarchaeum mannanilyticum is strain YSM-123T (=JCM 16328T =CECT 7565T).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.