Aurones are plant flavonoids that provide yellow color to the flowers of some popular ornamental plants, such as snapdragon and cosmos. In this study, we have identified an enzyme responsible for the synthesis of aurone from chalcones in the yellow snapdragon flower. The enzyme (aureusidin synthase) is a 39-kilodalton, copper-containing glycoprotein catalyzing the hydroxylation and/or oxidative cyclization of the precursor chalcones, 2',4',6',4-tetrahydroxychalcone and 2',4',6',3,4-pentahydroxychalcone. The complementary DNA encoding aureusidin synthase is expressed in the petals of aurone-containing varieties. DNA sequence analysis revealed that aureusidin synthase belongs to the plant polyphenol oxidase family, providing an unequivocal example of the function of the polyphenol oxidase homolog in plants, i.e., flower coloration.
Natural rubber (NR) is stored in latex as rubber particles (RPs), rubber molecules surrounded by a lipid monolayer. Rubber transferase (RTase), the enzyme responsible for NR biosynthesis, is believed to be a member of the cis-prenyltransferase (cPT) family. However, none of the recombinant cPTs have shown RTase activity independently. We show that HRT1, a cPT from Heveabrasiliensis, exhibits distinct RTase activity in vitro only when it is introduced on detergent-washed HeveaRPs (WRPs) by a cell-free translation-coupled system. Using this system, a heterologous cPT from Lactucasativa also exhibited RTase activity, indicating proper introduction of cPT on RP is the key to reconstitute active RTase. RP proteomics and interaction network analyses revealed the formation of the protein complex consisting of HRT1, rubber elongation factor (REF) and HRT1-REF BRIDGING PROTEIN. The RTase activity enhancement observed for the complex assembled on WRPs indicates the HRT1-containing complex functions as the NR biosynthetic machinery.DOI: http://dx.doi.org/10.7554/eLife.19022.001
We identified two glycosyltransferases that contribute to the structural diversification of flavonol glycosides in grapevine (Vitis vinifera): glycosyltransferase 5 (Vv GT5) and Vv GT6. Biochemical analyses showed that Vv GT5 is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT), and Vv GT6 is a bifunctional UDP-glucose/UDP-galactose:flavonol-3-Oglucosyltransferase/galactosyltransferase. The Vv GT5 and Vv GT6 genes have very high sequence similarity (91%) and are located in tandem on chromosome 11, suggesting that one of these genes arose from the other by gene duplication. Both of these enzymes were expressed in accordance with flavonol synthase gene expression and flavonoid distribution patterns in this plant, corroborating their significance in flavonol glycoside biosynthesis. The determinant of the specificity of Vv GT5 for UDP-glucuronic acid was found to be Arg-140, which corresponded to none of the determinants previously identified for other plant GATs in primary structures, providing another example of convergent evolution of plant GAT. We also analyzed the determinants of the sugar donor specificity of Vv GT6. Gln-373 and Pro-19 were found to play important roles in the bifunctional specificity of the enzyme. The results presented here suggest that the sugar donor specificities of these Vv GTs could be determined by a limited number of amino acid substitutions in the primary structures of protein duplicates, illustrating the plasticity of plant glycosyltransferases in acquiring new sugar donor specificities. INTRODUCTIONGrapevine (Vitis vinifera) ( Figure 1A) has been one of the most important fruit crops from the beginning of human civilization (McGovern et al., 1997). Dietary intake of grapevine-based products results in diverse biological effects that are beneficial to human health, in part due to polyphenols, such as flavonoids (e.g., flavonols, proanthocyanidins, and anthocyanins) (Renaud and de Lorgeril, 1992;Corder et al., 2001Corder et al., , 2006Baur et al., 2006). Flavonols, such as kaempferol, quercetin, and isorhamnetin, are an important class of bioactive flavonoids, which are most abundant as their 3-O-glycosides (i.e., glucoside, glucuronoside, galactoside, and rutinoside) in the berries, seeds, and leaves of grapevine (Hmamouchi et al., 1996;Castillo-Munoz et al., 2009).In this plant, biosynthesis of flavonol glycosides primarily serves to protect the plant from excess UV light (Price et al., 1995;Matus et al., 2009). Flavonol aglycons are biosynthesized from dihydroflavonols by the action of flavonol synthase (Vv FLS), a 2-oxoglutarate-dependent dioxygenase, which is temporally regulated by an R2R3-Myb transcription factor, Vv MYBF1 (Fujita et al., 2006;Czemmel et al., 2009). Subsequently, glycosylation of flavonols enhances their water solubility, such that high concentrations of flavonols can accumulate in plant cells.From a food chemistry perspective, flavonol glycosides define the color of wine grapes and products by acting as copigments (Yoshitama et al., 1992;Boulto...
Flavonoids are most commonly conjugated with various sugar moieties by UDP-sugar:glycosyltransferases (UGTs) in a lineage-specific manner. Generally, the phylogenetics and regiospecificity of flavonoid UGTs are correlated, indicating that the regiospecificity of UGT differentiated prior to speciation. By contrast, it is unclear how the sugar donor specificity of UGTs evolved. Here, we report the biochemical, homology-modeled, and phylogenetic characterization of flavonoid 7-Oglucuronosyltransferases (F7GAT), which is responsible for producing specialized metabolites in Lamiales plants. All of the Lamiales F7GATs were found to be members of the UGT88-related cluster and specifically used UDP-glucuronic acid (UDPGA). We identified an Arg residue that is specifically conserved in the PSPG box in the Lamiales F7GATs. Substitution of this Arg with Trp was sufficient to convert the sugar donor specificity of the Lamiales F7GATs from UDPGA to UDPglucose. Homology modeling of the Lamiales F7GAT suggested that the Arg residue plays a critical role in the specific recognition of anionic carboxylate of the glucuronic acid moiety of UDPGA with its cationic guanidinium moiety. These results support the hypothesis that differentiation of sugar donor specificity of UGTs occurred locally, in specific plant lineages, after establishment of general regiospecificity for the sugar acceptor. Thus, the plasticity of sugar donor specificity explains, in part, the extraordinary structural diversification of phytochemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.