Since the 2017 Southern Hemisphere influenza season, the A(H1N1)pdm09-like virus recommended for use in the vaccine was changed because human, but not ferret, sera distinguish A(H1N1)pdm09 viruses isolated after 2013 from the previously circulating strains. An amino acid substitution, lysine to glutamine, at position 166 (H3 numbering) in the major antigenic site of HA was reported to be responsible for the antigenic drift. Here, we obtained two anti-A(H1N1)pdm09 HA monoclonal antibodies that failed to neutralize viruses isolated after 2013 from a vaccinated volunteer. Escape mutations were identified at position 129, 165, or 166 in the major antigenic site of HA. Competitive growth of the escape mutant viruses with the wild-type virus revealed that some escape mutants possessing an amino acid substitution other than K166Q showed superior growth to that of the wild-type virus. These results suggest that in addition to the K166Q mutation that occurred in epidemic strains, other HA mutations can confer resistance to antibodies that recognize the K166 area, leading to emergence of epidemic strains with such mutations.
BackgroundThe rapidly accumulating disease susceptibility information collected from coronavirus disease (COVID-19) patient genomes must be urgently utilized to develop therapeutic interventions for SARS-CoV-2 infection. Chromosome 12q24.13, which encodes the 2’-5’-oligoadenylate synthetase (OAS) family of proteins that sense viral genomic RNAs and trigger an antiviral response, is identified as one of the genomic regions that contains SNPs associated with COVID-19 severity. A high-risk SNP identified at the splice acceptor site of OAS1 exon 6 is known to change the proportions of the various splicing isoforms and the activity of the enzyme.MethodsWe employed in-silico motif search and RNA pull-down assay to define a factor responsible for the OAS1 splicing. Next, we rationally selected a candidate for slicing modulator to modulate this splicing.ResultsWe found that inhibition of CDC-like kinase with a small chemical compound induces switching of OAS1 splice isoforms in human lung cells. In this condition, increased resistance to SARS-CoV-2 infection, enhanced RNA degradation, and transcriptional activation of interferon β1, were also observed.ConclusionsThe results indicate the possibility of using chemical splicing modifiers aided by genome-based precision medicine to boost the innate immune response against SARS-CoV-2 infection.
Influenza B virus has been known to infect humans and other animals, including seals. Vaccination efficacy varies across seasons. Human monoclonal antibodies (mAbs) can be useful for developing novel vaccines, guided by epitope analysis, and can be used therapeutically. Hybridoma technology has been used to make mAbs. Here we evaluated SPYMEG as a fusion partner cell line for human mAb generation specific to influenza B hemagglutinin (HA). SPYMEG is a human/murine myeloma partner cell line that has previously been used to generate human mAbs that recognize the HA of influenza A and B viruses. Peripheral blood mononuclear cells were obtained from 16 volunteers, previously vaccinated with the 2014–2015 trivalent seasonal influenza vaccine, and were fused with SPYMEG to yield hybridomas. The resulting hybridomas were screened for antigen-specific antibody secretion and cloned by limiting dilution. We obtained 32 stable clones secreting anti-influenza B HA human IgG, although most of these clones were obtained from one volunteer (SeaV-29) who had a robust immune response. We conclude that SPYMEG is a good fusion partner cell line, although cloning by limiting dilution may lead to significant loss of hybridomas.
Lassa virus (LASV)—a member of the family Arenaviridae—causes Lassa fever in humans and is endemic in West Africa. Currently, no approved drugs are available. We screened 2480 small compounds for their potential antiviral activity using pseudotyped vesicular stomatitis virus harboring the LASV glycoprotein (VSV-LASVGP) and a related prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV). Follow-up studies confirmed that CP100356 hydrochloride (CP100356), a specific P-glycoprotein (P-gp) inhibitor, suppressed VSV-LASVGP, LCMV, and LASV infection with half maximal inhibitory concentrations of 0.52, 0.54, and 0.062 μM, respectively, without significant cytotoxicity. Although CP100356 did not block receptor binding at the cell surface, it inhibited low-pH-dependent membrane fusion mediated by arenavirus glycoproteins. P-gp downregulation did not cause a significant reduction in either VSV-LASVGP or LCMV infection, suggesting that P-gp itself is unlikely to be involved in arenavirus entry. Finally, our data also indicate that CP100356 inhibits the infection by other mammarenaviruses. Thus, our findings suggest that CP100356 can be considered as an effective virus entry inhibitor for LASV and other highly pathogenic mammarenaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.