Adult intestinal stem cells (ISCs) possess both a long-term proliferation ability and differentiation capability into enterocytes. As a novel in vitro system for the evaluation of drug absorption, we characterized a human small intestinal epithelial cell (HIEC) monolayer that differentiated from adult ISCs. Continuous proliferation/ differentiation from ISCs consistently conferred the capability of maturation of enterocytes to HIECs over 25 passages. The morphologically matured HIEC monolayer consisted of polarized columnar epithelia with dense microvilli, tight junctions, and desmosomes 8 days after seeding onto culture inserts. Transepithelial electrical resistance across the monolayer was 9-fold lower in HIECs (98.9 V 3 cm 2 ) than in Caco-2 cells (900 V 3 cm 2 ), which indicated that the looseness of the tight junctions in the HIEC monolayer was similar to that in the human small intestine (approximately 40 V 3 cm 2 ). No significant differences were observed in the overall gene expression patterns of the major drug-metabolizing enzymes and transporters between the HIEC and Caco-2 cell monolayers. Furthermore, the functions of P-glycoprotein and breast cancer resistance protein in the HIEC monolayer were confirmed by the vectorial transport of marker substrates and their disappearance in the presence of specific inhibitors. The apparent drug permeability values of paracellularly transported compounds (fluorescein isothiocyanate-dextran 4000, atenolol, and terbutaline) and nucleoside transporter substrates (didanosine, ribavirin, and doxifluridine) in the HIEC monolayer were markedly higher than those of Caco-2 cells, whereas transcellularly transported drugs (pindolol and midazolam) were equally well permeated. In conclusion, the HIEC monolayer can serve as a novel and superior alternative to the conventional Caco-2 cell monolayer for predicting oral absorption in humans.
Mechanical stress on nucleus pulposus cells promotes the proliferation of cells and alters the properties of intervertebral disc cells. This study may reflect the adaptation of the intervertebral disc to increased motion and stress.
NEDD8-activating enzyme (NAE) is an essential E1 enzyme of the NEDD8 conjugation (neddylation) pathway, which controls cancer cell growth and survival through activation of cullin-RING ubiquitin ligase complexes (CRL). In this study, we describe the preclinical profile of a novel, highly potent, and selective NAE inhibitor, TAS4464. TAS4464 selectively inhibited NAE relative to the other E1s UAE and SAE. TAS4464 treatment inhibited cullin neddylation and subsequently induced the accumulation of CRL substrates such as CDT1, p27, and phosphorylated IkBa in human cancer cell lines. TAS4464 showed greater inhibitory effects than those of the known NAE inhibitor MLN4924 both in enzyme assay and in cells. Cytotoxicity profiling revealed that TAS4464 is highly potent with wide-spread antiproliferative activity not only for cancer cell lines, but also patient-derived tumor cells. TAS4464 showed prolonged target inhibition in human tumor xenograft mouse models; weekly or twice a week TAS4464 administration led to prominent antitumor activity in multiple human tumor xenograft mouse models including both hematologic and solid tumors without marked weight loss. As a conclusion, TAS4464 is the most potent and highly selective NAE inhibitor reported to date, showing superior antitumor activity with prolonged target inhibition. It is, therefore, a promising agent for the treatment of a variety of tumors including both hematologic and solid tumors. These results support the clinical evaluation of TAS4464 in hematologic and solid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.