Adult T-cell leukemia (ATL) is an aggressive neoplasm caused by human T-cell leukemia virus type I (HTLV-I). The nuclear transcription factor, NF-kappaB, is induced by HTLV-I and is central to the ensuing neoplasia. To examine the effect of a novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on ATL in vivo, we developed an improved severe combined immunodeficiency (SCID) mouse model for ATL. Five-week-old SCID mice in which natural killer (NK) cell activity had been eliminated were inoculated intraperitoneally with the HTLV-I-infected cell lines, TL-Om1, MT-1, MT-2 and HUT-102. No engraftment of TL-Om1 cells and little tumorigenesis of MT-1 cells were detected 40 days after injection. In contrast, inoculation of mice with MT-2 and HUT-102 cells elicited high mortality, 100% frequency of gross tumor formation and tumor cell infiltration of various organs, all of which were reduced by coadministration of DHMEQ during the inoculation. Moreover, tumors from mice treated with DHMEQ had a high frequency of apoptosis. These results suggest that DHMEQ induces apoptosis in HTLV-I-transformed cells in vivo, resulting in inhibition of tumor formation and organ infiltration, thereby enhancing survival.
Noroviruses cause most cases of acute viral gastroenteritis worldwide. The lack of a cell culture infection model for human norovirus necessitates the use of molecular methods and/or viral surrogate models amenable to cell culture to predict norovirus inactivation. Murine norovirus (MNV) may be used to construct a small animal model for studying the biology and pathogenesis of noroviruses because MNV is the only norovirus that replicates in cell culture and a small animal model. However, recent studies have shown that natural MNV infection is widespread in laboratory mouse colonies. We investigated MNV infection in both conventional and specific pathogen-free (SPF) genetically modified mice from Japan and the US, and commercial mice from several animal breeders in Japan, using serological and molecular techniques. MNV antibodies were detected in 67.3% of conventional mice and 39.1% of SPF mice from Japan and 62.5% of conventional mice from the US. MNV antibodies were also found in 20% of commercial SPF C57BL/6 mice from one of three breeders. Partial gene amplification of fecal isolates from infected animals showed that the isolates were homologous to reported MNV sequences. These results suggest that both conventional and SPF laboratory mice, including commercial mice, are widely infected with MNV, which might require considerable attention as an animal model of human disease.
Gnotobiotic (GB) mice were colonized with various groups of intestinal bacteria to determine which members of the indigenous flora would exert colonization resistance against Pseudomonas aeruginosa. P. aeruginosa was cultured from the faeces at levels of 10(3)-10(4) cells/g in GB mice inoculated with either the combination of bacteroides and clostridia obtained from conventional (CV) mice or the combination of bacteroides, lactobacilli and clostridia obtained from limited flora mice. The combination of lactobacilli and clostridia from CV mice also did not eliminate P. aeruginosa from GB mice. However, P. aeruginosa was not detected in the faeces of GB mice by 14 days after inoculation with the combination of bacteroides, lactobacilli and clostridia obtained from CV mice. Thus, a complex indigenous flora consisting of bacteroides, lactobacilli and certain clostridia obtained from CV mice but not clostridia obtained from limited flora mice is required to exert complete colonization resistance against P. aeruginosa in GB mice.
We previously showed that an intraperitoneal infection with mouse hepatitis virus (MHV) persists in interferon-gamma (IFN-gamma)-deficient C57BL/6 (B6-GKO) mice and results in subacute fatal peritonitis, which bears a resemblance to feline infectious peritonitis. To examine the role of other host factors in MHV infection in mice, IFN-gamma-deficient mice with a BALB/c background (BALB-GKO) were infected intraperitoneally with MHV and compared with B6-GKO mice. In contrast to B6-GKO mice, BALB-GKO mice died within 1 week due to acute hepatic failure. The viral titer of the liver in BALB-GKO mice was significantly higher than that in B6-GKO mice. All hepatocytes in BALB-GKO mice were necrotic at 5 days post-infection, which was clearly distinct from large but limited lesion in the liver from infected B6-GKO mice. The serum alanine aminotransferase activity of infected BALB-GKO mice were higher than that of B6-GKO mice and was paralleled with the severity of the pathological changes and viral titers in infected mice. Administration of exogenous IFN-gamma to BALB-GKO partially inhibited the acute death. These results indicate that BALB-GKO and B6-GKO mice clearly show different diseases following MHV infection, although wild type counterparts of both mice apparently showed the same clinical course after MHV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.