Strategic classification, i.e. classification under possible strategic manipulations of features, has received a lot of attention from both the machine learning and the game theory community. Most works focus on analysing properties of the optimal decision rule under such manipulations. In our work we take a learning theoretic perspective, focusing on the sample complexity needed to learn a good decision rule which is robust to strategic manipulation. We perform this analysis by introducing a novel loss function, the strategic manipulation loss, which takes into account both the accuracy of the final decision rule and its vulnerability to manipulation. We analyse the sample complexity for a known graph of possible manipulations in terms of the complexity of the function class and the manipulation graph. Additionally, we initialize the study of learning under unknown manipulation capabilities of the involved agents. Using techniques from transfer learning theory, we define a similarity measure for manipulation graphs and show that learning outcomes are robust with respect to small changes in the manipulation graph. Lastly, we analyse the (sample complexity of) learning of the manipulation capability of agents with respect to this similarity measure, providing novel guarantees for strategic classification with respect to an unknown manipulation graph.
Strategic classification, i.e. classification under possible strategic manipulations of features, has received a lot of attention from both the machine learning and the game theory community. Most works focus on analysing properties of the optimal decision rule under such manipulations. In our work we take a learning theoretic perspective, focusing on the sample complexity needed to learn a good decision rule which is robust to strategic manipulation. We perform this analysis by introducing a novel loss function, the strategic manipulation loss, which takes into account both the accuracy of the final decision rule and its vulnerability to manipulation. We analyse the sample complexity for a known graph of possible manipulations in terms of the complexity of the function class and the manipulation graph. Additionally, we initialize the study of learning under unknown manipulation capabilities of the involved agents. Using techniques from transfer learning theory, we define a similarity measure for manipulation graphs and show that learning outcomes are robust with respect to small changes in the manipulation graph. Lastly, we analyse the (sample complexity of) learning of the manipulation capability of agents with respect to this similarity measure, providing novel guarantees for strategic classification with respect to an unknown manipulation graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.