This paper mainly analyses the forecasting of sub-sovereign credit ratings using machine learning methods in the non-US, Europe and other regional and sub-sovereign ratings. Specific focus is based on developing an accurate forecasting model based on machine learning. The forecasting accuracy was examined on two forecasting horizons, one and two years ahead. The study was designed to determine the cost sensitivity of various machine learning methods and to develop an accurate decision-support system that minimizes the cost of credit rating classification for sub-sovereign entities across countries and world regions. Each side of the economic, financial and debt and budget, revenues and expenditures were considered to provide sufficient inputs for the machine learning models. The analyses is to consider the ordinal character of the rating classes, classification cost (cost-sensitivity) which is used as objective function, in assessing credit ratings and evaluating of bonds i.e. regional credit rating modeling. This paper has been able to demonstrate that machine learning models based on current available financial and economic data present accurate classifications of credit ratings. Also the sub-sovereign credit rating forecast signified that the Random Forest and SMO algorithm performed significantly better than the statistical methods. Some practical implications were also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.