One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada.The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.Sensitivity tests utilizing both the 2ice (ice and snow) and 3ice (ice, snow and graupel) Goddard microphysical schemes were also conducted. The domain-and timeaverage cloud species profiles from WRF simulations with both microphysical schemes show identical results (due to weak vertical velocities and therefore the absence of large precipitating liquid or ice particles like graupel). However, both microphysics schemes produced an appreciable amount of liquid water while the C3VP aircraft measurements show much less liquid water than the model in both snow events. These results indicate that additional research is needed to improve the current cloud microphysics scheme for 2 the extreme cold environment in high latitudes. Future aircraft observations are also needed to verify the abscence of graupel in high-latitude in-land snow events.
This study presents results from a model intercomparison project, focusing on the range of responses in deep convective cloud updrafts to varying cloud condensation nuclei (CCN) concentrations amongst seven, state-of-the-art, cloud-resolving models. Simulations of scattered convective clouds near Houston, Texas are conducted, after being initialized with both relatively low and high CCN concentrations. Deep convective updrafts are identified, and trends in the updraft intensity and frequency are assessed. The factors contributing to the vertical velocity tendencies are examined to identify the physical processes associated with the CCN-induced, updraft changes.The models show several consistent trends. In general, the changes between the High-CCN and Low-CCN simulations in updraft magnitudes throughout the depth of the troposphere are within 15% for all of the models. All models produce stronger (~+5-15%) mean updrafts from ~4–7 km above ground level (AGL) in the High-CCN simulations, followed by a waning response up to ~8 km AGL in most of the models. Thermal buoyancy was more sensitive than condensate loading to varying CCN concentrations in most of the models and more impactful in the mean updraft responses. However, there are also differences between the models. The change in the amount of deep convective updrafts varies significantly. Furthermore, approximately half the models demonstrate neutral-to-weaker (~-5-0%) updrafts above ~8 km AGL, while the other models show stronger (~+10%) updrafts in the High-CCN simulations. The combination of the CCN-induced impacts on the buoyancy and vertical perturbation pressure gradient terms better explains these middle- and upper-tropospheric updraft trends than the buoyancy terms alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.