The two-dimensional (2D) forward/inverse discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh-Hadamard transform (DWHT), play a fundamental role in many practical applications. Due to the separability property, all these transforms can be uniquely defined as a triple matrix product with one matrix transposition. Based on a systematic approach to represent and schedule different forms of the n × n matrix-matrix multiply-add (MMA) operation in 3D index space, we design new orbital highly-parallel/scalable algorithms and present an efficient n × n unified array processor for computing any n × n forward/inverse discrete separable transform in the minimal 2n time-steps. Unlike traditional 2D systolic array processing, all n 2 register-stored elements of initial/intermediate matrices are processed simultaneously by all n 2 processing elements of the unified array processr at each time-step. Hence the proposed array processor is appropriate for applications with naturally arranged multidimensional data such as still images, video frames, 2D data from a matrix sensor, etc. Ultimately, we introduce a novel formulation and a highlyparallel implementation of the frequently required matrix data alignment and manipulation by using MMA operations on the same array processor so that no additional circuitry is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.