The baroreflex loop consists of a fast neural arc and a slow mechanical arc. We hypothesized that the neural baroreflex arc compensates the slow mechanical response and thus improves the quality of blood pressure regulation. We estimated the open-loop transfer characteristics of the neural baroreflex arc (HP), i.e., from carotid sinus pressure to sympathetic nerve activity (SNA), and that of the effective peripheral baroreflex arc (Hp), i.e., from SNA to arterial pressure, in anesthetized rabbits. The gain of Hn was constant below 0.12 +/- 0.057 Hz and increased with a slope of 6.1 +/- 0.06 dB/octave above its frequency up to 1 Hz. In contrast, the gain of Hp was constant below 0.071 +/- 0.03 Hz and decreased with a slope of -11.0 +/- 1.48 dB/octave above the frequency. These data indicate that Hn accelerates slow peripheral responses in the frequency range of 0.1-1 Hz. Although too much acceleration in the high-frequency range could result in instability of the system, numerical analysis of the closed-loop baroreflex response indicated that the neural arc optimized arterial pressure regulation in achieving both stability and quickness.
The sympathetic baroreflex is an important feedback system in stabilization of arterial pressure. This system can be decomposed into the controlling element (mechanoneural arc) and the controlled element (neuromechanical arc). We hypothesized that the intersection of the two operational curves representing their respective functions on an equilibrium diagram should define the operating point of the arterial baroreflex. Both carotid sinuses were isolated in 16 halothane-anesthetized rats. The vagi and aortic depressor nerves were cut bilaterally. Carotid sinus pressure (CSP) was sequentially altered in 10-mmHg increments from 80 to 160 mmHg while sympathetic efferent nerve activity (SNA) and systemic arterial pressure (SAP) were recorded simultaneously under various hemorrhagic conditions. The mechanoneural arc was characterized by the response of SNA to CSP and the neuromechanical arc by the response of SAP to SNA. We parametrically analyzed the relationship between input and output for each arc using a four-parameter logistic equation model. In baseline states, the two arcs intersected each other at the point at which the instantaneous gain of each arc attained its maximum. Severe hemorrhage lowered the gain and offset of the neuromechanical arc and moved the operating point, whereas the mechanoneural arc remained unchanged. The operating points measured under the closed-loop conditions were indistinguishable from those estimated from the intersections of the two arc curves on the equilibrium diagram. The average root mean square errors of estimate for arterial pressure and SNA were 2 and 3%, respectively. Such an analytic approach could explain a mechanism for the determination of the operating point of the sympathetic baroreflex system and thus helps us integratively understand its function.
Background-Although left ventricular end-systolic elastance (E es ) has often been used as an index of contractility, technical difficulties in measuring volume and in changing loading conditions have made its clinical application somewhat limited. By approximating the time-varying elastance curve by 2 linear functions (isovolumic contraction phase and ejection phase) and estimating the slope ratio of these, we developed a method to estimate E es on a single-beat basis from pressure values, systolic time intervals, and stroke volume. Methods and Results-In 11 anesthetized dogs, we compared single-beat E es with that obtained with caval occlusion.Although the decrease (but not the increase) in contractility (5.3 to 11.4 mm Hg/mL) and the change in loading conditions (3.7 to 34.0 mm Hg/mL) over wide ranges significantly altered the slope ratio, the estimation of E es was reasonably accurate (yϭ0.97xϩ0.46, rϭ0.929, SEEϭ2.1 mm Hg/mL). Conclusions-E es can be estimated on a single-beat basis from easily obtainable variables by approximating the time-varying elastance curve by a bilinear function.
Although the characteristics of the static interaction between the sympathetic and parasympathetic nervous systems in regulating heart rate (HR) have been well established, how the dynamic interaction modulates the HR response remains unknown. We therefore investigated dynamic interaction by estimating the transfer function from nerve stimulation to HR using a band-limited Gaussian white-noise technique. The transfer function relating dynamic sympathetic stimulation to HR had characteristics of a second-order low-pass filter. Simultaneous tonic vagal stimulation at 5 and 10 Hz increased gain of the transfer function by 55.0 +/- 40.1 and 80.7 +/- 50.5%, respectively (P < 0.05). The transfer function from dynamic vagal stimulation to HR had characteristics of a first-order low-pass filter. Simultaneous tonic sympathetic stimulation at 5 and 10 Hz increased the gain by 18.2 +/- 17.9 and 24.1 +/- 18.0%, respectively (P < 0.05). Thus interaction augmented dynamic gain bidirectionally, even though it affected mean HR antagonistically. By virtue of this interaction, the autonomic nervous system appears to extend its dynamic range of operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.