Escherichia coli has closely related amino acid chemoreceptors with distinct ligand specificity, Tar for L-aspartate and Tsr for L-serine. Crystallography of the ligand-binding domain of Tar identified the residues interacting with aspartate, most of which are conserved in Tsr. However, swapping of the nonconserved residues between Tsr and Tar did not change ligand specificity. Analyses with chimeric receptors led us to hypothesize that distinct three-dimensional arrangements of the conserved ligand-binding residues are responsible for ligand specificity. To test this hypothesis, the structures of the apo-and serinebinding forms of the ligand-binding domain of Tsr were determined at 1.95 and 2.5 Å resolutions, respectively. Some of the Tsr residues are arranged differently from the corresponding aspartate-binding residues of Tar to form a high affinity serinebinding pocket. The ligand-binding pocket of Tsr was surrounded by negatively charged residues, which presumably exclude negatively charged aspartate molecules. We propose that all these Tsr-and Tar-specific features contribute to specific recognition of serine and aspartate with the arrangement of the side chain of residue 68 (Asn in Tsr and Ser in Tar) being the most critical.
The aspartate chemoreceptor Tar has a thermosensing function that is modulated by covalent modification of its four methylation sites (Gln295, Glu302, Gln309, and Glu491). Without posttranslational deamidation, Tar has no thermosensing ability. When Gln295 and Gln309 are deamidated to Glu, the unmethylated and heavily methylated forms function as warm and cold sensors, respectively. In this study, we carried out alanine-scanning mutagenesis of the methylation sites. Although alanine substitutions influenced the signaling bias and the methylation level, all of the mutants retained aspartate-sensing function. Those with single substitutions had almost normal thermosensing properties, indicating that substitutions at any particular methylation site do not seriously impair thermosensing function. In the posttranslational modification-defective background, some of the alanine substitutions restored thermosensing ability. Warm sensors were found among mutants retaining two glutamate residues, and cold sensors were found among those with one or no glutamate residue. This result suggests that the negative charge at the methylation sites is one factor that determines thermosensor phenotypes, although the size and shape of the side chain may also be important. The warm, cold, and null thermosensor phenotypes were clearly differentiated, and no intermediate phenotypes were found. Thus, the different thermosensing phenotypes that result from covalent modification of the methylation sites may reflect distinct structural states. Broader implications for the thermosensing mechanism are also discussed.Escherichia coli responds to small changes in temperature by altering its swimming behavior to migrate in spatial temperature gradients (22). This phenomenon, thermotaxis, is well suited to studies of the molecular mechanism of thermosensing. Four closely related transmembrane proteins have been identified as thermosensors (21,27,29). These "thermometer" proteins were originally identified as methyl-accepting chemotaxis proteins (MCPs) and as transducers responsible for chemotaxis (for reviews, see references 23, 32 and 40). In response to a repellent or an attractant, the receptor activates or inactivates the cytoplasmic histidine kinase CheA, which phosphorylates itself and serves as a phosphodonor for the cytoplasmic signaling protein CheY. Phospho-CheY interacts with the flagellar motor, which otherwise rotates counterclockwise (CCW), to cause clockwise (CW) rotation that results in loss of propulsive power and change of swimming direction (tumbling). A warm sensor mediates attractant and repellent responses upon increases and decreases in temperature, respectively, and a cold sensor mediates the opposite responses to the same stimuli (29).Both in the presence and in the absence of its ligand, the receptors exist as homodimers (25) that form stable complexes with the CheA homodimer and two molecules of the coupling protein CheW (14, 34). The thermosensing mechanism is thought to involve temperature-dependent changes in the str...
A gene encoding putative retinal protein was cloned from Haloterrigena turkmenica (JCM9743). The deduced amino acid sequence was most closely related to that of deltarhodopsin, which functions as a light-driven H+ pump and was identified in a novel strain Haloterrigena sp. arg-4 (K. Ihara, T. Uemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura, Y. Mukohata, Evolution of the archaeal rhodopsins: Evolution rate changes by gene duplication and functional differentiation, J. Mol. Biol. 285 (1999) 163–174. GenBank Accession No. AB009620). Thus, we called the present protein H. turkmenica deltarhodopsin (HtdR) in this report. Differing from the Halobacterium salinarum bacteriorhodopsin (bR), functional expression of HtdR was achieved in Escherichia coli membrane with a high yield of 10–15 mg protein/L culture. The photocycle of purified HtdR was similar to that of bR. The photo-induced electrogenic proton pumping activity of HtdR was verified. We co-expressed both HtdR and EmrE, a proton-coupled multi-drug efflux transporter in E. coli, and the cells successfully extruded ethidium, a substrate of EmrE, on illumination
The Escherichia coli aspartate receptor Tar is involved in the thermotactic response. We have studied how its thermosensing function is affected by the modification of the four methyl-accepting residues (Gln 295 , Glu 302 , Gln 309, and Glu 491 ), which play essential roles in adaptation. We found that the primary translational product of tar mediates a chemoresponse, but not a thermoresponse, and that Tar comes to function as a thermoreceptor, once Gln 295 or Gln 309 is deamidated. This is the first identification of a thermosensing-specific mutant form, suggesting that the methylation sites of Tar constitute at least a part of the region required for thermoreception, signaling, or both. We have also investigated the inverted thermoresponse mediated by Tar in the presence of aspartate. We found that, whereas the deamidated-and-unmethylated form functions as a warm receptor, eliciting a smooth-swimming signal upon increase of temperature, the heavily methylated form functions as a cold receptor, eliciting a smoothswimming signal upon decrease of temperature. Thus, it is suggested that Tar exists in at least three distinct states, each of which allows it to function as a warm, cold, or null thermoreceptor, depending on the modification patterns of its methylation sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.