Obesity and diabetes are often associated with lipotoxic conditions in multiple tissues. The insulin-producing
β
cells are susceptible to elevated lipid levels and the ensuing lipotoxicity. The preservation of
β
cell mass and function is one of the main goals of diabetes management under these metabolically stressful conditions. However, the adverse effects from the adaptive signaling pathways that
β
cells use to counteract lipotoxic stress have secondary negative effects in their own right. Antilipotoxic signaling cascades in
β
cells can contribute to their eventual failure. Such dual roles are seen for many other biological adaptive processes as well.
Dendritic cells (DCs) express the immunoregulatory enzyme IDO in response to certain inflammatory stimuli, but it is unclear whether DCs express this enzyme under steady-state conditions in vivo. In this study, we report that the DCs in mesenteric lymph nodes (MLNs) constitutively express functional IDO, which metabolizes tryptophan to kynurenine. In line with a previous report that regulatory T cells (Tregs) can induce IDO in DCs via the CTLA-4/B7 interaction, a substantial proportion of the MLN DCs were located in juxtaposition to Tregs, whereas this tendency was not observed for splenic DCs, which do not express IDO constitutively. When CTLA-4 was selectively deleted in Tregs, the frequency of IDO-expressing DCs in MLNs decreased significantly, confirming CTLA-4’s role in IDO expression by MLN DCs. We also found that the MLN DCs produced CCL22, which can attract Tregs via CCR4, and that the phagocytosis of autologous apoptotic cells induced CCL22 expression in CCL22 mRNA-negative DCs. Mice genetically deficient in the receptor for CCL22, CCR4, showed markedly reduced IDO expression in MLN-DCs, supporting the involvement of the CCL22/CCR4 axis in IDO induction. Together with our previous observation that MLN DCs contain much intracytoplasmic cellular debris in vivo, these results indicate that reciprocal interactions between the DCs and Tregs via both B7/CTLA-4 and CCL22/CCR4 lead to IDO induction in MLN DCs, which may be initiated and/or augmented by the phagocytosis of autologous apoptotic cells by intestinal DCs. Such a mechanism may help induce the specific milieu in MLNs that is required for the induction of oral tolerance.
Adiponectin is essential for the regulation of tissue substrate utilization and systemic insulin sensitivity. Clinical studies have suggested a positive association of circulating adiponectin with healthspan and lifespan. However, the direct effects of adiponectin on promoting healthspan and lifespan remain unexplored. Here, we are using an adiponectin null mouse and a transgenic adiponectin overexpression model. We directly assessed the effects of circulating adiponectin on the aging process and found that adiponectin null mice display exacerbated age-related glucose and lipid metabolism disorders. Moreover, adiponectin null mice have a significantly shortened lifespan on both chow and high-fat diet. In contrast, a transgenic mouse model with elevated circulating adiponectin levels has a dramatically improved systemic insulin sensitivity, reduced age-related tissue inflammation and fibrosis, and a prolonged healthspan and median lifespan. These results support a role of adiponectin as an essential regulator for healthspan and lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.