The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel many species of swimming bacteria. The rotor is a set of rings up to 45 nm in diameter in the cytoplasmic membrane; the stator contains about ten torque-generating units anchored to the cell wall at the perimeter of the rotor. The free-energy source for the motor is an inward-directed electrochemical gradient of ions across the cytoplasmic membrane, the protonmotive force or sodium-motive force for H+-driven and Na+-driven motors, respectively. Here we demonstrate a stepping motion of a Na+-driven chimaeric flagellar motor in Escherichia coli at low sodium-motive force and with controlled expression of a small number of torque-generating units. We observe 26 steps per revolution, which is consistent with the periodicity of the ring of FliG protein, the proposed site of torque generation on the rotor. Backwards steps despite the absence of the flagellar switching protein CheY indicate a small change in free energy per step, similar to that of a single ion transit.
Lipoproteins in Escherichia coli are anchored to the periplasmic side of either the inner or the outer membrane by a lipid moiety that is covalently attached to the amino-terminal cysteine residue. Membrane specificity depends on a sorting signal at position 2 of the lipoprotein. Lipoproteins directed to the outer membrane are released from the inner membrane in an ATP-dependent manner through the formation of a complex with LolA, a periplasmic chaperone. However, the ATPase involved in this reaction has not been identified. Here we show, using reconstituted proteoliposomes, that a new complex, LolCDE, belonging to the ATP-binding cassette (ABC) transporter family, catalyses the release of lipoproteins in LolA- and sorting-signal-dependent manners. The LolCDE complex differs mechanistically from all other ABC transporters as it is not involved in the transmembrane transport of substrates. This new mechanism is evolutionarily conserved in other gram-negative bacteria.
Precise regulation of the number and placement of flagella is critical for the mono-polar-flagellated bacterium Vibrio alginolyticus to swim efficiently. We have shown previously that the number of polar flagella is positively regulated by FlhF and negatively regulated by FlhG. We now show that DflhF cells are non-flagellated as are most DflhFG cells; however, some of the DflhFG cells have several flagella at lateral positions. We found that FlhF-GFP was localized at the flagellated pole, and its polar localization was seen more intensely in DflhFG cells. On the other hand, most of the FlhG-GFP was diffused throughout the cytoplasm, although some was localized at the pole. To investigate the FlhF-FlhG interaction, immunoprecipitation was performed by using an anti-FlhF antibody, and FlhG co-precipitated with FlhF. From these results we propose a model in which FlhF localization at the pole determines polar location and production of a flagellum, FlhG interacts with FlhF to prevent FlhF from localizing at the pole, and thus FlhG negatively regulates flagellar number in V. alginolyticus cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.