HIF-1 is active in hypoxia, such as inflamed mucosa, and HIF-1 in epithelium has been reported to control inflamed mucosa in IBD models. Although T cells play an important role for pathogenesis of IBD, the function of HIF-1 in T cells remains to be elucidated. We aimed to clarify the function of HIF-1 in T cells in IBD with focus on the balance between Treg and Teff. Double immunohistochemistry of colonic mucosa in IBD patients showed that HIF-1 was expressed in T cells infiltrating the inflamed mucosa, suggesting that HIF-1 in T cells is involved in the pathogenesis. DSS administration to T cell-specific HIF-1␣ KO mice showed more severe colonic inflammation than control mice with the up-regulation of Th1 and Th17. Hypoxic stimulation in vitro increased Treg activation in WT T cells but not in HIF-1-deleted T cells. In contrast, hypoxic stimulation increased Th17 activation, and the degree was higher in HIF-1-deleted cells than in control cells. These results show that hypoxia controls intestinal inflammation by regulating cytokine balance in a HIF-1-dependent manner, suggesting that strengthening HIF-1 induction in T cells at the sites of inflammation might be a therapeutic strategy for IBD regulation.
Lysophosphatidic acid (LPA) has a critical role in lymphocyte migration to secondary lymphoid organs. Autotaxin (ATX)/lysophospholipase D, in the vascular endothelium, is the main enzyme involved in LPA production. Whether ATX is involved in pathological lymphocyte migration to the inflamed mucosa has not been studied. We investigated the involvement of ATX in inflammatory bowel disease patients and two murine models of colitis. Tissue samples were obtained by intestinal biopsies from patients with Crohn's disease and those with ulcerative colitis with informed consent. ATX immunoreactivity was colocalized with MAdCAM-1-positive high-endothelial-like vessels, close to sites of lymphocyte infiltration. Enhanced expression of ATX mRNA was observed in the inflamed mucosa from Crohn's disease and ulcerative colitis patients. ATX mRNA expression level was remarkably higher in the actively inflamed mucosa than in the quiescent mucosa in the same patient. In the T-cell-transferred mouse model, ATX mRNA expression level gradually increased as colitis developed. In the dextran sodium sulfate mouse model, the expression level was considerably higher in colonic mucosa of chronically developed colitis than in colonic mucosa of acute colitis. Administration of an ATX inhibitor, bithionol, remarkably decreased lymphocyte migration to the intestine and ameliorated both dextran sodium sulfate-induced colitis and CD4-induced ileocolitis. In transwell assays, administration of bithionol or 1-bromo-3(s)-hydroxy-4-(palmitoyloxy) butylphosphonate (BrP-LPA) significantly decreased transmigration of splenocytes through high-endothelial-like vessels induced by TNF-α. We conclude that enhanced expression of ATX in the active mucosa has been implicated in the pathophysiology of inflammatory bowel disease through enhancing aberrant lymphocyte migration to the inflamed mucosa.
Psychological stress is an environmental factor considered to be a precipitating factor of inflammatory bowel disease. Interleukin (IL)-18 plays a role in stress-induced aggravation in some diseases. The aim of this study was to establish a model of murine colitis exacerbated by psychological stress and to clarify the role of IL-18 in this model. Male C57Bl/6 mice and IL-18(-/-) mice were used for this study. The mice received dextran sulfate sodium (DSS) for induction of colitis. Some mice were exposed to psychological stress using a communication box. Body weight, colonic length, and histological inflammation were measured for assessment of colitis. Tumor necrosis factor (TNF)-α and IL-18 expression in the colon and IL-18 expression in the adrenal gland were analyzed using real-time PCR. The effect of anti-IL-18 antibody was also investigated. Effects of TNF-α and IL-18 on cytokine expressions were studied using the colonic epithelial cell line LS174T. Induction of psychological stress in DSS-treated wild-type mice significantly exacerbated colitis with enhanced expression of proinflammatory cytokines and IL-18. However, induction of psychological stress in DSS-treated IL-18(-/-) mice did not aggravate colitis compared with that in the IL-18(-/-) group given only DSS treatment. Stress-induced aggravation of colitis was ameliorated significantly by anti-IL-18 antibody treatment. IL-18 did not enhance TNF-α-induced expression of intercellular adhesion molecule-1 or IL-8 in LS174T. We established a model of colitis exacerbated by psychological stress. Psychological stress enhanced IL-18 expression and plays a proinflammatory role in stress-induced aggravation of colitis.
Fatty acids in our daily diet are broadly classified into cis and trans fatty acids (TFAs). TFAs are formed during the manufacturing process of hydrogenated vegetable oils such as margarine. Modern diets such as deep-fried products, frozen foods, and packaged snacks commonly include large quantities of margarine containing TFAs. Although an increased report in the effects of the diet containing TFAs on a risk factor of metabolic syndrome, diabetes mellitus, and coronary heart disease has been observed in the recent years, influence on intestinal inflammation remains unknown. This review describes proinflammatory effects of TFAs in our diary diet on various systemic disorders and also discusses a possible role of TFAs on gut inflammation. Trans fatty acids in diet and their consumptionNatural unsaturated fatty acids of double bonds are almost cis form. However, the presence of geometrical isomers (also known as cis-trans isomerism or E-Z isomerism) called trans fatty acids (TFAs) are also known.TFAs are steric isomers of the common cis unsaturated fatty acids containing at least one double bond in the trans configuration. There are distinct differences in the configuration of between cis form and trans form. Around the carbon-to-carbon bond, the existence of hydroxyl radicals exists on the same side is cis form and on the opposite side is trans form (Fig. 1). This disparity in structure promotes distinct differences both in chemical configuration and biological effects.TFAs are generated by the rumen fermentation of ruminant animals such as cattle and are largely found in dairy products and meats. The most predominant of these TFAs are vaccenic acid and account for quite low (~1-8% of total fatty acids) within our diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.