The EML4 (echinoderm microtubule-associated protein-like 4)-ALK (anaplastic lymphoma kinase) fusion-type tyrosine kinase is an oncoprotein found in 4 to 5% of non-small-cell lung cancers, and clinical trials of specific inhibitors of ALK for the treatment of such tumors are currently under way. Here, we report the discovery of two secondary mutations within the kinase domain of EML4-ALK in tumor cells isolated from a patient during the relapse phase of treatment with an ALK inhibitor. Each mutation developed independently in subclones of the tumor and conferred marked resistance to two different ALK inhibitors. (Funded by the Ministry of Health, Labor, and Welfare of Japan, and others.).
Purpose: EML4-ALK is a transforming fusion tyrosine kinase, several isoforms of which have been identified in lung cancer. Immunohistochemical detection of EML4-ALK has proved difficult, however, likely as a result of low transcriptional activity conferred by the promoter-enhancer region of EML4. The sensitivity of EML4-ALK detection by immunohistochemistry should be increased adequately. Experimental Design: We developed an intercalated antibody-enhanced polymer (iAEP) method that incorporates an intercalating antibody between the primary antibody to ALK and the dextran polymer-based detection reagents. Results: Our iAEP method discriminated between tumors positive or negative for EML4-ALK in a test set of specimens. Four tumors were also found to be positive for ALK in an archive of lung adenocarcinoma (n = 130) and another 4 among fresh cases analyzed in a diagnostic laboratory. These 8 tumors were found to include1with EML4-ALK variant1,1with variant 2, 3 with variant 3, and 2 with previously unidentified variants (designated variants 6 and 7). Inverse reverse transcription-PCR analysis revealed that the remaining tumor harbored a novel fusion in which intron 24 of KIF5B was ligated to intron 19 of ALK. Multiplex reverse transcription-PCR analysis of additional archival tumor specimens identified another case of lung adenocarcinoma positive for KIF5B-ALK. Conclusions: The iAEP method should prove suitable for immunohistochemical screening of tumors positive for ALK or ALK fusion proteins among pathologic archives. Coupling of PCR-based detection to the iAEP method should further facilitate the rapid identification of novel ALK fusion genes such as KIF5B-ALK.Gene fusion is a major mechanism of carcinogenesis in hematologic malignancies and sarcomas (1). Identification of the BCR-ABL fusion kinase, which is generated as a result of the balanced chromosome anomaly t(9;22)(q34;q11) in chronic myelogenous leukemia (2), has thus been followed by the discovery of many fusion-type oncogenes (3). In contrast, it has remained unclear whether such translocationdependent fusion-type oncogenes also play a major role in the pathogenesis of epithelial tumors. Recently, however, almost 50% of prostate cancer cases have been suggested to harbor gene fusions involving ETS transcription factor loci (4), and we have discovered a recurrent chromosome translocation, inv(2)(p21p23), in non -small cell lung cancer (NSCLC) that results in the production of an EML4-ALK fusion-type protein tyrosine kinase (PTK;.Forced expression of EML4-ALK in lung epithelial cells induced the rapid development of hundreds of lung cancer nodules in mice, and peroral administration of inhibitors of the PTK activity of EML4-ALK was shown to clear such tumors from the lungs, demonstrating the pivotal role of EML4-ALK in the pathogenesis of NSCLC positive for this fusion kinase (9). This latter observation also supports the clinical application of ALK
The oncogenic mechanisms underlying acute lymphoblastic leukemia (ALL) in adolescents and young adults (AYA; 15-39 years old) remain largely elusive. Here we have searched for new oncogenes in AYA-ALL by performing RNA-seq analysis of Philadelphia chromosome (Ph)-negative AYA-ALL specimens (n = 73) with the use of a next-generation sequencer. Interestingly, insertion of D4Z4 repeats containing the DUX4 gene into the IGH locus was frequently identified in B cell AYA-ALL, leading to a high level of expression of DUX4 protein with an aberrant C terminus. A transplantation assay in mice demonstrated that expression of DUX4-IGH in pro-B cells was capable of generating B cell leukemia in vivo. DUX4 fusions were preferentially detected in the AYA generation. Our data thus show that DUX4 can become an oncogenic driver as a result of somatic chromosomal rearrangements and that AYA-ALL may be a clinical entity distinct from ALL at other ages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.