BRAF is a serine/threonine kinase that receives a mitogenic signal from RAS and transmits it to the MAP kinase pathway. Recent studies have reported that mutations of the BRAF gene were detected with varying frequencies in several cancers, notably more than 60% in melanoma. We analysed mutations of BRAF and RAS genes in 100 cases of thyroid carcinoma to investigate genetic aberrations in the RAS/RAF/MEK/MAP kinase pathway. BRAF mutations were detected exclusively in papillary carcinomas (40 in 76 cases: 53%), and were exclusively V599E, a mutation frequently observed in other carcinomas. NRAS mutation was observed in six cases (6%), all in histological types other than papillary carcinoma, and was exclusively Q61R. No mutations were found in KRAS or HRAS. Our results suggest that BRAF mutations may play a critical role in the carcinogenesis of papillary carcinoma of the thyroid.
After the accident at the Fukushima Daiichi Nuclear Power Plant, the thyroid ultrasound screening program for children aged 0–18 at the time of the accident was started from October 2011. The prevalence of thyroid carcinomas in that population has appeared to be very high (84 cases per 296,253). To clarify the pathogenesis, we investigated the presence of driver mutations in these tumours. 61 classic papillary thyroid carcinomas (PTCs), two follicular variant PTCs, four cribriform-morular variant PTCs and one poorly-differentiated thyroid carcinoma were analysed. We detected BRAFV600E in 43 cases (63.2%), RET/PTC1 in six (8.8%), RET/PTC3 in one (1.5%) and ETV6/NTRK3 in four (5.9%). Among classic and follicular variant PTCs, BRAFV600E was significantly associated with the smaller size. The genetic pattern was completely different from post-Chernobyl PTCs, suggesting non-radiogenic etiology of these cancers. This is the first study demonstrating the oncogene profile in the thyroid cancers discovered by large mass screening, which probably reflects genetic status of all sporadic and latent tumours in the young Japanese population. It is assumed that BRAFV600E may not confer growth advantage on paediatric PTCs, and many of these cases grow slowly, suggesting that additional factors may be important for tumour progression in paediatric PTCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.