Photodestruction spectra of carbon disulfide cluster anions, (CS2)n−, n=1–4, have been measured with a time-of-flight mass spectrometer coupled with an optical parametric oscillator. The spectra of all the cluster anions of n⩾2 were found to exhibit a similar absorption band peaking at 1.6–1.8 eV, suggesting that a C2S4− core is involved in the cluster anions. Photon energy dependence of competition between electron detachment and dissociation of the dimer anion was also observed. It was found that there is a reaction channel of the dimer anion producing C2S2− and S2, as well as the ordinary dissociation into CS2− and CS2. The most stable form of the dimer anion was investigated by ab initio calculations at the unrestricted Hartree–Fock/6-31+G* level, showing that the stable form involves covalent C–C and S–S bonds. Reaction mechanisms are discussed on the basis of electronic symmetries of the parent and the fragments.
In a series of spectroscopic work of the Rydberg states of CO, we present the rotational analysis of the v=0 and 1 levels of the singlet ns, np, nd and nf-Rydberg states (n=4–7). The spectra were measured by ion-dip spectroscopy with triple resonance excitation via the 3sσ:B 1Σ+ or the 3pσ:C 1Σ+ state. All the spectra were rotationally well resolved and the term value, quantum defect and the rotational constant were obtained for each state. Through the analysis of the rotational structure, the coupling between the Rydberg electron and the ion core has been investigated. For the np-Rydberg states, a switching from Hund’s case (b) to (d) was clearly observed with the increase of n. A significant perturbation was observed in the 6pπ 1Π and 7pπ 1Π states and it is suggested that these states are perturbed by the state with the same symmetry. For the nf-Rydberg states, the observed electronic energy was well analyzed by the long range force model and the precise ionization potential was obtained. The Rydberg↔valence and inter-Rydberg states interactions were also investigated. For the ns-Rydberg states, the interaction matrix element with the repulsive state was estimated from the measurement of linewidth of the rotational levels. The potential curve of the repulsive state to which ns-Rydberg states predissociate was also determined. Selective predissociation was found for the e-symmetry levels both in the v=0 and 1 levels of the nf-Rydberg state. A strong interaction between the v=0 levels of the 6d- and 7s-Rydberg states was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.