Proteoglycans are complex glycoconjugates that regulate critical biological pathways in all higher organisms. Bikunin, the simplest proteoglycan having a single glycosaminoglycan chain, is a serine protease inhibitor used to treat acute pancreatitis. Unlike the template driven synthesis of nucleic acids and proteins, Golgi synthesized glycosaminoglycans are not believed to have predictable or deterministic sequence. Bikunin peptidoglycosaminoglycans were prepared and fractionated to obtain a collection of size similar and charge similar chains. Fourier transform mass spectral analysis identified a small number of parent molecular-ions corresponding to mono-compositional peptidoglycosaminoglycans. Fragmentation using collision induced dissociation surprisingly afforded a single sequence for each mono-compositional parent-ion, unequivocally demonstrating the presence of a defined sequence. The common biosynthetic pathway for all proteoglycans suggests that even more structurally complex proteoglycans, such as heparan sulfate, may have defined sequences, requiring a readjustment of our understanding of information storage in complex glycans.
Chondroitin sulphate proteoglycans (CSPGs) are up-regulated in the CNS after injury and inhibit axon regeneration mainly through their glycosaminoglycan (CS-GAG) chains. We have analysed the mRNA levels of the CS-GAG synthesizing enzymes and measured the CS-GAG disaccharide composition by chromatography and immunocytochemistry. Chondroitin 6-sulfotransferase 1 (C6ST1) is up-regulated in most glial types around cortical injuries, and its sulphated product CS-C is also selectively up-regulated. Treatment with TGFalpha and TGFbeta, which are released after brain injury, promotes the expression of C6ST1 and the synthesis of 6-sulphated CS-GAGs in primary astrocytes. Oligodendrocytes, oligodendrocyte precursors and meningeal cells are all inhibitory to axon regeneration, and all express high levels of CS-GAG, including high levels of 6-sulphated GAG. In axon growth-inhibitory Neu7 astrocytes C6ST1 and 6-sulphated GAGs are expressed at high levels, whereas in permissive A7 astrocytes they are not detectable. These results suggest that the up-regulation of CSPG after CNS injury is associated with a specific sulphation pattern on CS-GAGs, mediating the inhibitory properties of proteoglycans on axonal regeneration.
Glycosaminoglycans are of critical importance in intercellular communication in organisms. This ubiquitous class of linear polyanions interacts with a wide variety of proteins, including growth factors and chemokines, which regulate important physiological processes. The presence of glycosaminoglycans on cell membranes and in the extracellular matrix also has resulted in their exploitation by infectious pathogens to gain access and entry into animal cells. This Account examines the structural and physical characteristics of these molecules responsible for their interaction with proteins important in cell-cell communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.