This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome.
Exophiala is a genus comprising several species of opportunistic black yeasts, which belongs to Ascomycotina. It is a rare cause of fungal infections. However, infections are often chronic and recalcitrant, and while the number of cases is steadily increasing in both immunocompromised and immunocompetent people, detailed knowledge remains scarce regarding infection mechanisms, virulence factors, specific predisposing factors, risk factors, and host response. The most common manifestations of Exophiala infection are skin infections, and the most frequent type of deep infection is pulmonary infection due to inhalation. The invasive disease ranges from cutaneous or subcutaneous infection to systemic dissemination to internal organs. The final identification of the causative organism should be achieved through a combination of several methods, including the newly introduced diagnostic analysis, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, together with sequencing of the ribosomal ribonucleic acid internal transcribed spacer region of the fungi, and histological and culture findings. Regarding treatment, because anti-infective agents and natural compounds exhibited poor antibiofilm activity, few treatments have ultimately been found to be effective for specific antifungal therapy, so the optimal antifungal therapy and duration of therapy for these infections remain unknown. Therefore, most forms of disease caused by Exophiala dermatitidis require aggressive combination therapies: Both surgical intervention and aggressive antifungal therapy with novel compounds and azoles are necessary for effective treatment.
A 74-year-old man was attacked by a wild boar while on his way home from his farm in the daytime in winter 2017 on the rural Izu peninsula. He did not provoke the boar; however, hunters were hunting animals in the mountains near the farm around the same time. The boar bit his left leg, and the man fell to the ground. The boar continued biting the man's left leg, and the man delivered a few kicks to the boar's face with his right leg. The boar then bit his right foot and ran away. The man was taken to a hospital, and a physical examination revealed 3 bite wounds on his left leg and right foot. The wounds were irrigated with sterilized saline and closed with sutures under local anesthesia. He received antibiotics and a tetanus toxoid booster. The next day, his wounds were found to be infected, and pus was drained from them. After these treatments, his wounds healed successfully. Animal bite wounds are frequently contaminated. Accordingly, in addition to early proper wound treatment, close observation of the wound is required for both the early detection of any signs of infection and early medical intervention, including appropriate drainage of pus and irrigation as necessary.
BACKGROUND:There have been few reports on the clinical significance of the fibrinogen degradation product (FDP) level in trauma patients with and without head injury. We retrospectively analyzed trauma patients with or without head injury to investigate the clinical signifi cance of the FDP level. METHODS:From April 2013 to June 2015, a medical chart review was retrospectively performed for all patients with trauma. The exclusion criteria included patients who did not receive a transfusion. The patients were divided into two groups: a FDP>100 group, which included patients who had an FDP level on arrival over 100 ng/mL, and a FDP≤100 group. RESULTS:The ratio of open fractures and the prothrombin ratio in the FDP>100 group were significantly smaller than those observed in the FDP≤100 group. The average age, ratio of blunt injury, Injury Severity Score (ISS), volume of transfusion and mortality ratio in the FDP>100 group were signifi cantly greater than those in the FDP≤100 group. There was a weakly positive correlation between the FDP level and ISS (R=0.35, P=0.002), but it was not associated with the transfusion volume. The results of an analysis excluding patients with head injury showed a similar tendency. CONCLUSION:The FDP levels may be a useful biochemical parameter for the initial evaluation of the severity of trauma and mortality even in blunt traumatized patients without head injury or with stable vital signs.
BackgroundSevere heat stroke tends to be complicated with rhabdomyolysis, especially in patients with exertional heat stroke. Rhabdomyolysis usually occurs in the acute phase of heat stroke. We herein report a case of heat stroke in a patient who experienced bimodal rhabdomyolysis in the acute and recovery phases.Case presentationA 34-year-old male patient was found lying unconscious on the road after participating in a half marathon in the spring. It was a sunny day with a maximum temperature of 24.2 °C. His medical and family history was unremarkable. Upon arrival, his Glasgow Coma Scale score was 10. However, the patient’s marked restlessness and confusion returned. A sedative was administered and tracheal intubation was performed. On the second day of hospitalization, a blood analysis was compatible with a diagnosis of acute hepatic failure; thus, he received fresh frozen plasma and a platelet transfusion was performed, following plasma exchange and continuous hemodiafiltration. The patient’s creatinine phosphokinesis (CPK) level increased to 8832 IU/L on the fifth day of hospitalization and then showed a tendency to transiently decrease. The patient was extubated on the eighth day of hospitalization after the improvement of his laboratory data. From the ninth day of hospitalization, gradual rehabilitation was initiated. However, he felt pain in both legs and his CPK level increased again. Despite the cessation of all drugs and rehabilitation, his CPK level increased to 105,945 IU/L on the 15th day of hospitalization. Fortunately, his CPK level decreased with a fluid infusion. The patient’s rehabilitation was restarted after his CPK level fell to <10,000 IU/L. On the 31st day of hospitalization, his CK level decreased to 623 IU/L and he was discharged on foot. Later, a genetic analysis revealed that he had a thermolabile genetic phenotype of carnitine palmitoyltransferase II (CPT II).ConclusionsPhysicians should pay special attention to the stress of rehabilitation exercises, which may cause collapsed muscles that are injured by severe heat stroke to repeatedly flare up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.