The effects of jump training on bone morphological and mechanical properties were investigated in immature bones of female Fischer 344 rats. Five-week-old rats were divided into control or five jump-trained groups comprised of 5-, 10-, 20-, 40-, and 100-jump groups, representing the number of jumps per day. The rats were jump-trained 5 days/week for 8 weeks, and the height of jump was increased to 40 cm progressively. The femur and tibia in the 5-jump group had significantly greater fat-free dry weights per body weight and maximum loads at the fracture tests than those in the control group. The tibia in the 5-jump group also had significantly larger cortical area at the cross-sectional analysis. Although a slight tendency toward increase according to the number of jumps per day was observed, there were few differences in bone morphological and mechanical parameters among the 10-, 20-, and 40-jump groups. The present results indicate that a large number of strains per day is not necessary for bone hypertrophy to develop in
The effects of jump training on bone hypertrophy were investigated in 3, 6, 12, 20 and 27 month-old female Fischer 344 rats. The rats of all age groups were divided into jump training (height: 40 cm, 100 times/day, 5 days/wk for 8 wk), run training (speed: 30 ml/min, 1 h/day, 5 days/wk for 8 wk) or sedentary group. Fat-free dry weights (FFW) of the femur and the tibia were significantly greater in the jump-trained rats than in the run-trained rats, and were significantly greater in the run-trained rats than in the sedentary rats. Jump training significantly increased FFW of the femur and the tibia not only in young rats but also in old rats, while run training did not increase FFW significantly in old rats. In young rats, both jump training and run training significantly increased the length of the femur and the tibia and the diameter of the femur. The diameter of the tibia was greater in the jump-trained rats than in the sedentary and the run-trained rats in all age groups. The results of the present study indicate that jump training was a more effective training mode than run training for bone hypertrophy and that the effects were not limited by age.
In order to investigate the relationship between metabolic state and myoelectrical activity in working muscle during short term intense exercise, eleven healthy males performed isokinetic knee extensions at an angular velocity of 180 deg X sec-1 for 30 and 60 s. The median frequency (MF) of the surface electromyogram (EMG) recorded from vastus lateralis was decreased while the time lag of torque production after the onset of electrical activity (EMD) was increased during exercise. These changes (MF and EMD) corresponded well to muscle lactate accumulation in the same muscle. Over the exercise period, the integrated EMG/knee extension peak torque ratio (E/T ratio) was increased, which indicated a decrease in the efficiency of electrical activity. It was concluded that the changes in the frequency components of the EMG and in the contractile property of the muscle during short term intense exercise correlated with lactate accumulation in the identical muscle, and that the decrease in efficiency of the electrical activity in the muscle suggested peripheral fatigue.
Keloid is a fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. The keloid matrix contains excess collagen and glycosaminoglycans (GAGs), but lacks elastic fiber. However, the roles of these matrix components in the pathogenesis of keloid are largely unknown. Here, we show that elastin and DANCE (also known as fibulin-5), a protein required for elastic fiber formation, are not deposited in the extracellular matrix of keloids, due to excess accumulation of chondoitin sulfate (CS), although the expression of elastin and DANCE is not affected. Amount of CS accumulated in the keloid legion was 6.9-fold higher than in normal skin. Fibrillin-1, a scaffold protein for elastic fiber assembly, was abnormally distributed in the keloid matrix. Addition of purified CS to keloid fibroblast culture resulted in abnormal deposition of fibrillin-1, concomitant with significantly decreased accumulation of elastin and DANCE in the extracellular matrix. We propose that CS plays a crucial role in the development of keloid lesions through inhibition of elastic fiber assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.