CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.
It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2•−) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.
The incidence of brain metastasis is increasing, however, little is known about molecular mechanism responsible for lung cancer-derived brain metastasis and their development in the brain. In the present study, brain pathology was examined in an experimental model system of brain metastasis as well as in human brain with lung cancer metastasis. In an experimental model, after 3–6 weeks of intracardiac inoculation of human lung cancer-derived (HARA-B) cells in nude mice, wide range of brain metastases were observed. The brain sections showed significant increase in glial fibrillary acidic protein (GFAP)-positive astrocytes around metastatic lesions. To elucidate the role of astrocytes in lung cancer proliferation, the interaction between primary cultured mouse astrocytes and HARA-B cells was analyzed in vitro. Co-cultures and insert-cultures demonstrated that astrocytes were activated by tumor cell-oriented factors; macrophage migration inhibitory factor (MIF), interleukin-8 (IL-8) and plasminogen activator inhibitor-1 (PAI-1). Activated astrocytes produced interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β), which in turn promoted tumor cell proliferation. Semi-quantitative immunocytochemistry showed that increased expression of receptors for IL-6 and its subunits gp130 on HARA-B cells. Receptors for TNF-α and IL-1β were also detected on HARA-B cells but down-regulated after co-culture with astrocytes. Insert-culture with astrocytes also stimulated the proliferation of other lung cancer-derived cell lines (PC-9, QG56, and EBC-1). These results suggest that tumor cells and astrocytes stimulate each other and these mutual relationships may be important to understand how lung cancer cells metastasize and develop in the brain.Electronic supplementary materialThe online version of this article (doi:10.1007/s10585-010-9354-8) contains supplementary material, which is available to authorized users.
Objective: Hippo signaling pathway is known to regulate organ development. In Hippo signaling pathway, YAP or TAZ works as a transcriptional co-activator and forms a transcriptional complex with TEAD. In several cancers, upstream factors in Hippo pathway are inactivated by genetic alterations. When the upstream factors are inactivated, TEAD is activated and forms a complex with YAP/TAZ resulting in enhancement of cell proliferation, drug resistance and so on. In the activation process, S-palmitoylation of TEAD is necessary for binding to YAP/TAZ. Malignant pleural mesothelioma (MPM) is one of cancer types which have genetic alterations in Hippo pathway genes. Although YAP/TAZ-TEAD inhibitor should be an ideal drug for MPM therapy, there are only a few reports about YAP/TAZ-TEAD inhibitor and the efficacy and selectivity are not sufficient. In this study, we succeeded to synthesize a small molecule TEAD inhibitor, K-975, and evaluated its mechanism of action and anti-tumor effect against MPM. Materials/methods: Inhibitory activity of K-975 on YAP/TAZ-TEAD protein-protein interaction (PPI) was evaluated in surface plasmon resonance (SPR) and co-immunoprecipitation assay. The effect of K-975 on palmitoylation status of TEAD was also evaluated. The three-dimensional structure of YAP-binding domain of TEAD1 in complex with K-975 was determined by X-ray crystallography. Anti-tumor effect of K-975 was evaluated by using MPM cell lines. Furthermore, using a derivative of K-975, 2 week-toxicity studies in rats and monkeys were performed. Results: K-975 inhibited YAP-TEAD and TAZ-TEAD PPI in NCI-H226 cells, a human MPM cell line. Also, K-975 inhibited palmitoylation of TEAD. The crystal structure revealed that K-975 directly bound to cysteine residue in YAP-binding domain of TEAD1. This cysteine residue is highly conserved in TEAD family and known as a site of S-palmitoylation. K-975 inhibited the cell proliferation of NCI-H226 with GI50 of about 20 nmol/L. K-975 also induced a change of gene expressions similar to that induced by YAP knockdown. In vivo experiments, K-975 strongly suppressed the tumor growth in several s.c. xenograft models and showed a significant survival benefit in an orthotopic xenograft model. However, 2 week-toxicity studies of a K-975 derivative with optimized bioavailability showed some pathological findings which suggested the renal toxicity. Conclusion: We synthesized a first-in-class drug which directly binds to TEAD protein and inhibits YAP/TAZ-TEAD PPI. K-975 showed a strong anti-tumor effect in pre-clinical MPM models. Although the renal toxicity might cause some difficulty in clinical use, we believe that a K-975 derivative has a possibility to become an effective drug candidate for MPM therapy. Citation Format: Ayumi Kaneda, Toshihiro Seike, Takeshi Uemori, Kensuke Myojo, Kensuke Aida, Tomohiro Danjo, Takahiro Nakajima, Daisuke Yamaguchi, Tomoko Hamada, Yoshiro Tsuji, Kaori Hamaguchi, Mai Yasunaga, Nobumasa Otsubo, Hideyuki Onodera, Yoichi Nishiya, Michihiko Suzuki, Junichi Saito, Toshihiko Ishii, Ryuichiro Nakai. Discovery of a first-in-class TEAD inhibitor which directly inhibits YAP/TAZ-TEAD protein-protein interaction and shows a potent anti-tumor effect in malignant pleural mesothelioma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3086.
Bradykinin (BK) has been reported to be a mediator of brain damage in acute insults. Receptors for BK have been identified on microglia, the pathologic sensors of the brain. Here, we report that BK attenuated lipopolysaccharide (LPS)-induced release of tumor necrosis factor-alpha (TNF-a) and interleukin-1b from microglial cells, thus acting as an anti-inflammatory mediator in the brain. This effect was mimicked by raising intracellular cAMP or stimulating the prostanoid receptors EP2 and EP4, while it was abolished by a cAMP antagonist, a prostanoid receptor antagonist, or by an inhibitor of the inducible cyclooxygenase (cyclooxygenase-2). BK also enhanced formation of prostaglandin E 2 and expression of microsomal prostaglandin E synthase. Expression of BK receptors and EP2/EP4 receptors were also enhanced. Using physiological techniques, we identified functional BK receptors not only in culture, but also in microglia from acute brain slices. BK reduced LPS-induced neuronal death in neuron-microglia cocultures. This was probably mediated via microglia as it did not affect TNF-a-induced neuronal death in pure neuronal cultures. Our data imply that BK has anti-inflammatory and neuroprotective effects in the central nervous system by modulating microglial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.