In higher plants, the chloroplast NAD(P)H dehydrogenase (NDH) complex mediates photosystem I (PSI) cyclic and chlororespiratory electron transport. We reported previously that NDH interacts with the PSI complex to form a supercomplex (NDH-PSI). In this study, NDH18 and FKBP16-2 (FK506 Binding Protein 16-2), detected in the NDH-PSI supercomplex by mass spectrometry, were shown to be NDH subunits by the analysis of their knockdown lines. On the basis of extensive mutant characterization, we propose a structural model for chloroplast NDH, whereby NDH is divided into four subcomplexes. The subcomplex A and membrane subcomplex are conserved in cyanobacteria, but the subcomplex B and lumen subcomplex are specific to chloroplasts. Two minor light-harvesting complex I proteins, Lhca5 and Lhca6, were required for the full-size NDH-PSI supercomplex formation. Similar to crr pgr5 double mutants that completely lack cyclic electron flow activity around PSI, the lhca6 pgr5 double mutant exhibited a severe defect in growth. Consistent with the impaired NDH activity, photosynthesis was also severely affected in mature leaves of lhca6 pgr5. We conclude that chloroplast NDH became equipped with the novel subcomplexes and became associated with PSI during the evolution of land plants, and this process may have facilitated the efficient operation of NDH.
In this paper we present the detailed results of a series of experiments designed to study the coherent backscatter of 50‐MHz radar waves from the mid‐latitude F region. Data were obtained with the active phased‐array MU radar in Japan and include some auxiliary E region coherent echoes as well. As in other turbulent ionospheric phenomena the intense nonthermal scatter comes from irregularities oriented parallel to B. The strongest echoes correspond to irregularities at least 20 dB stronger than thermal backscatter at the same frequency from typical F region densities at the same range. Simultaneous observations with ionosondes show that these echoes occur during strong mid‐latitude spread F. As defined by ionosondes, the latter phenomenon is certainly much more widespread than the turbulent upwelling events described here, but we believe that in some sense these correspond to the most violent mid‐latitude spread F. The strongest echoes occur in large patches which display away Doppler shifts corresponding to irregularity motion upward and northward from the radar. At the edges of these patches there is often a brief period of toward Doppler before the echoing region ceases. On rare occasions comparable patches of strong away and toward Doppler are detected, although in such cases the Doppler width of the toward echoes is much narrower than that of the away echoes. The away patches often are characterized by mean velocities well over 250 m/s and Doppler widths (full width at half maximum) of 50 m/s. The multiple beam capability at MU allowed us to track the patches in the zonal direction on two days. The patches moved east to west in both cases at velocities of 125 m/s and 185 m/s, respectively. There is a distinct tendency for the bottom contour of the scattering region to be modulated at the same period as the patch occurrence frequency as well as at higher frequencies. This higher‐frequency component may correspond to substructures in the large patches and to the E region coherent scatter patches which were detected simultaneously in several multiple beam experiments. In the companion paper (Kelley and Fukao, this issue), we explore a number of possible explanations for this phenomenon in more detail.
Abstract. By observing the ionospheric F region simultaneously in multiple beams with the middle and upper atmosphere radar, we have been able to track the passage of gravity waves and measure their propagation characteristics. Here we develop a climatology of wave propagation based on the observation of 58 daytime experiments conducted during 1986-1994. The thermosphere seems to be continuously swept by waves detectable by an incoherent scatter radar. These waves generally come for hours on end from a consistent or slowly varying direction, which can be any direction on a given day. Statistically, the waves show a moderate preference for southward travel, with this preference being reduced or shifted to southeastward travel during disturbed times. On average, the horizontal phase trace speed remains near 240 m/s for all periods inspected (40-130 min). This speed matches the behavior expected for lossless waves with 150-200 km vertical wavelength. We find small variability in this relation for different times of day, seasons, solar and magnetic conditions, and directions of wave travel, though waves on disturbed days seem to travel moderately faster on solar minimum mornings.
Blue light (BL) induces stomatal opening through the activation of H+-ATPases with subsequent ion accumulation in guard cells. In most plant species, red light (RL) enhances BL-dependent stomatal opening. This RL effect is attributable to the chloroplasts of guard cell, the only cells in the epidermis possessing this organelle. To clarify the role of chloroplasts in stomatal regulation, we investigated the effects of RL on BL-dependent stomatal opening in isolated epidermis, guard cell protoplasts, and intact leaves of Arabidopsis thaliana. In isolated epidermal tissues and intact leaves, weak BL superimposed on RL enhanced stomatal opening while BL alone was less effective. In guard cell protoplasts, RL enhanced BL-dependent H+-pumping and DCMU, a photosynthetic electron transport inhibitor, eliminated this effect. RL enhanced phosphorylation levels of the H+-ATPase in response to BL, but this RL effect was not suppressed by DCMU. Furthermore, DCMU inhibited both RL-induced and BL-dependent stomatal opening in intact leaves. The photosynthetic rate in leaves correlated positively with BL-dependent stomatal opening in the presence of DCMU. We conclude that guard cell chloroplasts provide ATP and/or reducing equivalents that fuel BL-dependent stomatal opening, and that they indirectly monitor photosynthetic CO2 fixation in mesophyll chloroplasts by absorbing PAR in the epidermis.
The cytochrome b 6 f (Cyt b 6 f) complex in flowering plants contains nine conserved subunits, of which three, PetG, PetL, and PetN, are bitopic plastid-encoded low-molecular-weight proteins of largely unknown function. Homoplastomic knockout lines of the three genes have been generated in tobacco (Nicotiana tabacum 'Petit Havana') to analyze and compare their roles in assembly and stability of the complex. Deletion of petG or petN caused a bleached phenotype and loss of photosynthetic electron transport and photoautotrophy. Levels of all subunits that constitute the Cyt b 6 f complex were faintly detectable, indicating that both proteins are essential for the stability of the membrane complex. In contrast, DpetL plants accumulate about 50% of other Cyt b 6 f subunits, appear green, and grow photoautotrophically. However, DpetL plants show increased light sensitivity as compared to wild type. Assembly studies revealed that PetL is primarily required for proper conformation of the Rieske protein, leading to stability and formation of dimeric Cyt b 6 f complexes. Unlike wild type, phosphorylation levels of the outer antenna of photosystem II (PSII) are significantly decreased under state II conditions, although the plastoquinone pool is largely reduced in DpetL, as revealed by measurements of PSI and PSII redox states. This confirms the sensory role of the Cyt b 6 f complex in activation of the corresponding kinase. The reduced light-harvesting complex II phosphorylation did not affect state transition and association of light-harvesting complex II to PSI under state II conditions. Ferredoxin-dependent plastoquinone reduction, which functions in cyclic electron transport around PSI in vivo, was not impaired in DpetL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.