Microglia and blood-borne macrophages in injured or diseased brains are difficult to distinguish because they share many common characteristics. However, the identification of microglia-specific markers and the use of flow cytometry have recently made it easy to discriminate these types of cells. In this study, we analyzed the features of blood-borne macrophages, and activated and resting microglia in a rat traumatic brain injury (TBI) model. Oxidative injury was indicated in macrophages and neurons in TBI lesions by the presence of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Generation of mitochondrial reactive oxygen species (ROS) was markedly observed in granulocytes and macrophages, but not in activated or resting microglia. Dihydroethidium staining supported microglia not being the major source of ROS in TBI lesions. Furthermore, macrophages expressed NADPH oxidase 2, interleukin-1β (IL-1β), and CD68 at higher levels than microglia. In contrast, microglia expressed transforming growth factor β1 (TGFβ1), interleukin-6 (IL-6), and tumor necrosis factor α at higher levels than macrophages. A hypnotic, bromovalerylurea (BU), which has anti-inflammatory effects, reduced both glycolysis and mitochondrial oxygen consumption. BU administration inhibited chemokine CCL2 expression, accumulation of monocytes/macrophages, 8-OHdG generation, mitochondrial ROS generation, and proinflammatory cytokine expression, and markedly ameliorated the outcome of the TBI model. Yet, BU did not inhibit microglial activation or expression of TGFβ1 and insulin-like growth factor 1 (IGF-1). These results indicate that macrophages are the major aggravating cell type in TBI lesions, in particular during the acute phase. Activated microglia may even play favorable roles. Reduction of cellular energy metabolism in macrophages and suppression of CCL2 expression in injured tissue may lead to amelioration of TBI.
Microglia, the immunocompetent cells in the central nervous system (CNS), have long been studied as pathologically deteriorating players in various CNS diseases. However, microglia exert ameliorating neuroprotective effects, which prompted us to reconsider their roles in CNS and peripheral nervous system (PNS) pathophysiology. Moreover, recent findings showed that microglia play critical roles even in the healthy CNS. The microglial functions that normally contribute to the maintenance of homeostasis in the CNS are modified by other cells, such as astrocytes and infiltrated myeloid cells; thus, the microglial actions on neurons are extremely complex. For a deeper understanding of the pathophysiology of various diseases, including those of the PNS, it is important to understand microglial functioning. In this review, we discuss both the favorable and unfavorable roles of microglia in neuronal survival in various CNS and PNS disorders. We also discuss the roles of blood-borne macrophages in the pathogenesis of CNS and PNS injuries because they cooperatively modify the pathological processes of resident microglia. Finally, metabolic changes in glycolysis and oxidative phosphorylation, with special reference to the pro-/anti-inflammatory activation of microglia, are intensively addressed, because they are profoundly correlated with the generation of reactive oxygen species and changes in pro-/anti-inflammatory phenotypes.
2019) Chloride intracellular channel protein 2 in cancer and noncancer human tissues: relationship with tight junctions, Tissue Barriers, 7:1, 1593775, ABSTRACT Chloride intracellular channel protein 2 (CLIC2) belongs to the CLIC family of conserved metazoan proteins. Although CLICs have been identified as chloride channels, they are currently considered multifunctional proteins. CLIC2 is the least studied family member. We investigated CLIC2 expression and localization in human hepatocellular carcinoma, metastatic colorectal cancer in the liver, and colorectal cancer. Significant expression of mRNAs encoding CLIC1, 2, 4, and 5 were found in the human tissues, but only CLIC2 was predominantly expressed in non-cancer tissues surrounding cancer masses. Fibrotic or dysfunctional (aspartate aminotransferase ≥40) non-cancer liver tissues and advanced stage HCC tissues expressed low levels of CLIC2. Endothelial cells lining blood vessels but not lymphatic vessels in non-cancer tissues expressed CLIC2 as well as high levels of the tight junction proteins claudins 1 and 5, occludin, and ZO-1. Most endothelial cells in blood vessels in cancer tissues had very low expressions of CLIC2 and tight junction proteins. CD31 + /CD45 − endothelial cells isolated from non-cancer tissues expressed mRNAs encoding CLIC2, claudin 1, occludin and ZO-1, while similar cell fractions from cancer tissues had very low expressions of these molecules. Knockdown of CLIC2 expression in human umbilical vein endothelial cells (HUVECs) allowed human cancer cells to transmigrate through a HUVEC monolayer. These results suggest that CLIC2 may be involved in the formation and/or maintenance of tight junctions and that cancer tissue vasculature lacks CLIC2 and tight junctions, which allows the intravasation of cancer cells necessary for hematogenous metastasis.
ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.