Photovoltaic modules must generally be connected in series in order to produce the voltage required to efficiently drive an inverter. However, if even a very small part of photovoltaic module (PV module) is prevented from receiving light, the generation power of the PV module is decreased disproportionately. This greater than expected decrease occurs because PV modules which do not receive adequate light cannot operate on the normal operating point, but rather operate as loads. As a result, the total power from the PV modules is decreased if even only a small part of the PV modules are shaded. In the present paper, a novel circuit, referred to as the generation control circuit (GCC), which enables maximum power to be obtained from all of the PV modules even if some of the modules are prevented from receiving light. The proposed circuit enables the individual PV modules to operate effectively at the maximum power point tracking, irrespective of the series connected PV module system. In addition, the total generated power is shown experimentally to increase for the experimental setup used in the present study. Index Terms-AC interactive inverter, multistage chopper, photovoltaic module.
In recent years, interest in natural energy has grown in response to increased concern for the environment. Many kinds of inverter circuits and their control schemes for photovoltaic (PV) power generation systems have been studied. A conventional system employs a PV array in which many PV modules are connected in series to obtain sufficient dc input voltage for generating ac utility line voltage from an inverter circuit. However, the total power generated from the PV array is sometimes decreased remarkably when only a few modules are partially covered by shadows, thereby decreasing inherent current generation, and preventing the generation current from attaining its maximum value on the array. To overcome this drawback, an ac module strategy has been proposed. In this system, a low-power dc-ac utility interactive inverter is individually mounted on each PV module and operates so as to generate the maximum power from its corresponding PV module.Especially in the case of a single-phase utility interactive inverter, an electrolytic capacitor of large capacitance has been connected on the dc input bus in order to decouple the power pulsation caused by single-phase power generation to the utility line. However, especially during the summer season, the ac module inverters have to operate under a very high atmospheric temperature, and hence the lifetime of the inverter is shortened, because the electrolytic capacitor has a drastically shortened life when used in a high-temperature environment. Of course, we may be able to use film capacitors instead of the electrolytic capacitors if we can pay for the extreme large volume of the inverter. However, this is not a realistic solution for ac module systems. This paper proposes a novel flyback-type utility interactive inverter circuit topology suitable for ac module systems when its lifetime under high atmospheric temperature is taken into account. A most distinctive feature of the proposed system is that the decoupling of power pulsation is executed by an additional circuit that enables employment of film capacitors with small capacitance not only for the dc input line but also for the decoupling circuit, and hence the additional circuit is expected to extend the lifetime of the inverter. The proposed inverter circuit also enables realization of small volume, lightweight, and stable ac current injection into the utility line. A control method suitable for the proposed inverter is also proposed. The effectiveness of the proposed inverter is verified thorough P-SIM simulation and experiments on a 100-W prototype.Index Terms-AC module, flyback inverter, photovoltaic (PV) power generation, utility interactive inverter. Fig. 1. System configuration of the conventional and the proposed ac module photovoltaic generation systems. (a) Conventional photovoltaic generation system . (b) AC module photovoltaic generation system.
The silicon clathrates--materials composed of metal-doped Si(20) dodecahedra--were identified as the first superconductors based on pure silicon networks. The mechanism of superconductivity in these materials can be obtained by studying their phonon modes, as modified by isotope substitution, and specific-heat measurements. Here, we present experimental studies that provide strong evidence that superconductivity in Ba(8)Si(46) is explained in the framework of phonon-mediated Bardeen-Cooper-Schriefer theory. Analyses using the McMillan approximation of the Eliashberg equation indicate that the superconducting mechanism is in the medium coupling regime, but at the high-end limit. The large density of states at the Fermi level, which arises from hybridization of the Si(20) cluster and Ba orbitals, is responsible for the unexpectedly high superconducting temperature. The temperature evolution of the specific heat unambiguously shows that this is an s-wave symmetry superconductor.
Abstract-This paper presents a novel photovoltaic inverter that can not only synchronize a sinusoidal ac output current with a utility line voltage, but also control the power generation of each photovoltaic module in an array. The proposed inverter system is composed of a half-bridge inverter at the utility interface and a novel generation control circuit which compensates for reductions in the output power of the system that are attributable to variations in the generation conditions of respective photovoltaic modules. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting the output power of the system. Furthermore, the generation control circuit attenuates low-frequency ripple voltage, which is caused by the half-bridge inverter, across the photovoltaic modules. Consequently, the output power of system is increased due to the increase in average power generated by the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.Index Terms-Maximum power point tracking control, photovoltaic module, photovoltaic power generation, utility interactive inverters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.