Linear optics underpins tests of fundamental quantum mechanics and computer science, as well as quantum technologies. Here we experimentally demonstrate the longstanding goal of a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 MachZehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons and their measurement with a 12 single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with average fidelity 0.999 ± 0.001. Our system is capable of switching between these and any other linear optical protocol in seconds. These results point the way to applications across fundamental science and quantum technologies.Photonics has been crucial in establishing the foundations of quantum mechanics [1], and more recently has pushed the vanguard of efforts in understanding new non-classical computational possibilities. Typical protocols involve nonlinear operations, such as the generation of quantum states of light through optical frequency conversion [2,3], or measurement-induced nonlinearities for quantum logic gates [4], together with linear operations between optical modes to implement core processing functions [5]. Encoding qubits in the polarisation of photons has been particularly appealing for the ability to implement arbitrary linear operations on the two polarisation modes using a series of wave plates [6]. For path encoding the same operations can be mapped to a sequence of beamsplitters and phase shifters. In fact, since any linear optical (LO) circuit is described by a unitary operator, and a specific array of basic two-mode operations is mathematically sufficient to implement any unitary operator on optical modes [7], it is theoretically possible to construct a single device with sufficient versatility to implement any possible LO operation up to the specified number of modes.Here we report the realisation of this longstanding goal with a six-mode device that is completely reprogrammable and universal for LO. We demonstrate the versatility of this universal LO processor (LPU) by applying it to several quantum information protocols, including tasks that were previously not possible. We im- * anthony.laing@bristol.ac.uk plement heralded quantum logic gates at the heart of the circuit model of LO quantum computing [4] and new heralded entangling gates that underpin the measurementbased model of LO quantum computing [8][9][10], both of which are the first of their kind in integrated photonics. We perform 100 different boson sampling [11][12][13][14][15] experiments and simultaneously realise new verification protocols. Finally, we use multi-p...
Advances in control techniques for vibrational quantum states in molecules present new challenges for modelling such systems, which could be amenable to quantum simulation methods. Here, by exploiting a natural mapping between vibrations in molecules and photons in waveguides, we demonstrate a reprogrammable photonic chip as a versatile simulation platform for a range of quantum dynamic behaviour in different molecules. We begin by simulating the time evolution of vibrational excitations in the harmonic approximation for several four-atom molecules, including HCS, SO, HNCO, HFHF, N and P. We then simulate coherent and dephased energy transport in the simplest model of the peptide bond in proteins-N-methylacetamide-and simulate thermal relaxation and the effect of anharmonicities in HO. Finally, we use multi-photon statistics with a feedback control algorithm to iteratively identify quantum states that increase a particular dissociation pathway of NH. These methods point to powerful new simulation tools for molecular quantum dynamics and the field of femtochemistry.
The electric dipole strength distribution in 120 Sn between 5 and 22 MeV has been determined at RCNP Osaka from polarization transfer observables measured in proton inelastic scattering at E0 = 295 MeV and forward angles including 0 • . Combined with photoabsorption data a highly precise electric dipole polarizability αD( 120 Sn) = 8.93(36) fm 3 is extracted. The dipole polarizability as isovector observable par excellence carries direct information on the nuclear symmetry energy and its density dependence. The correlation of the new value with the well established αD( 208 Pb) serves as a test of its prediction by nuclear energy density functionals (EDFs). Models based on modern Skyrme interactions describe the data fairly well while most calculations based on relativistic Hamiltonians cannot.PACS numbers: 21.10. Ky, 25.40.Ep, 21.60.Jz, 27.60.+j The nuclear equation of state (EOS) describing the energy of nuclear matter as function of its density has wide impact on nuclear physics and astrophysics [1] as well as physics beyond the standard model [2,3]. The EOS of symmetric nuclear matter with equal proton and neutron densities is well constrained from the ground state properties of finite nuclei, especially in the region of saturation density ρ 0 ≃ 0.16 fm −3 [4]. However, the description of astrophysical systems as, e.g., neutron stars requires knowledge of the EoS for asymmetric matter [5][6][7][8] which is related to the leading isovector parameters of nuclear matter, viz. the symmetry energy (J) and its derivative with respect to density (L) [9]. For a recent overview of experimental and theoretical studies of the symmetry energy see Ref. [10]. In spite of steady extension of knowledge on exotic nuclei, just these isovector properties are poorly determined by fits to experimental ground state data because the valley of nuclear stability is still extremely narrow along isotopic chains [11][12][13]. Thus one needs observables in finite nuclei specifically sensitive to isovector properties to better confine J and L. There are two such observables, the neutron skin r skin in nuclei with large neutron excess and the (static) dipole polarizability α D .The neutron skin thickness r skin = r n − r p defined as the difference of the neutron and proton root-meansquare radii r n,p is determined by the interplay between the surface tension and the pressure of excess neutrons on the core described by L [14,15]. Studies within nuclear density-funtional theory [16] show for all EDFs a strong correlation between r skin and the isovector symmetry energy parameters [17][18][19]. The most studied case so far is 208 Pb, where r skin has been derived from coherent photoproduction of π 0 mesons [20], antiproton annihilation [21,22], proton elastic scattering at 650 MeV [23] and 295 MeV [24], and from the dipole polarizability [25]. A nearly model-independent determination of the neutron skin is possible by measuring the weak form factor of nuclei with parity-violating elastic electron scattering [26]. Such an experiment has b...
Relativistic Coulomb excitation E1 strength below neutron thresholdThe electric dipole strength distribution in 120 Sn has been extracted from proton inelastic scattering experiments at E p = 295 MeV and at forward angles including 0 • . It differs from the results of a 120 Sn(γ , γ ) experiment and peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and is more than three times larger than what is observed with the (γ , γ ) reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1 − states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.