Cell migration is a fundamental biological process involving membrane polarization and cytoskeletal dynamics, both of which are regulated by Rho family GTPases. Among these molecules, Rac is crucial for generating the actin-rich lamellipodial protrusion, a principal part of the driving force for movement. The CDM family proteins, Caenorhabditis elegans CED-5, human DOCK180 and Drosophila melanogaster Myoblast City (MBC), are implicated to mediate membrane extension by functioning upstream of Rac. Although genetic analysis has shown that CED-5 and Myoblast City are crucial for migration of particular types of cells, physiological relevance of the CDM family proteins in mammals remains unknown. Here we show that DOCK2, a haematopoietic cell-specific CDM family protein, is indispensable for lymphocyte chemotaxis. DOCK2-deficient mice (DOCK2-/-) exhibited migration defects of T and B lymphocytes, but not of monocytes, in response to chemokines, resulting in several abnormalities including T lymphocytopenia, atrophy of lymphoid follicles and loss of marginal-zone B cells. In DOCK2-/- lymphocytes, chemokine-induced Rac activation and actin polymerization were almost totally abolished. Thus, in lymphocyte migration DOCK2 functions as a central regulator that mediates cytoskeletal reorganization through Rac activation.
Shirai et al. show that the glycolytic enzyme PKM2 serves as a molecular integrator of metabolic dysfunction, oxidative stress and tissue inflammation in macrophages from patients with atherosclerotic coronary artery disease.
The balanced action of cytokines is known to be critical for the maintenance of homeostatic immune responses. Here, we report the development of an inflammatory skin disease involving CD8(+) T cells, in mice lacking the transcription factor, interferon regulatory factor-2 (IRF-2). CD8(+) T cells exhibit in vitro hyper-responsiveness to antigen stimulation, accompanied with a notable upregulation of the expression of genes induced by interferon-alpha/beta (IFN-alpha/beta). Furthermore, both disease development and CD8(+) T cell abnormality are suppressed by the introduction of nullizygosity to the genes that positively regulate the IFN-alpha/beta signaling pathway. IRF-2 may represent a unique negative regulator, attenuating IFN-alpha/beta-induced gene transcription, which is necessary for balancing the beneficial and harmful effects of IFN-alpha/beta signaling in the immune system.
Seven-color analyses of immunofluorescence-stained tissue samples were accomplished using Fourier spectroscopy-based hyperspectral imaging and singular value decomposition. This system consists of a combination of seven fluorescent dyes, three filtersets, an epifluorescence microscope, a spectral imaging system, a computer for data acquisition, and data analysis software. The spectra of all pixels in a multicolor image were taken simultaneously using a Sagnac type interferometer. The spectra were deconvolved to estimate the contribution of each component dye, and individual dye images were constructed based on the intensities of assigned signals. To obtain mixed spectra, three filter sets, i.e., Bl, Gr, and Rd for Alexa488 and Alexa532, for Alexa546, Alexa568, and Alexa594, and for Cy5 and Cy5.5, respectively, were used for simultaneous excitation of two or three dyes. These fluorophores have considerable spectral overlap which precludes their separation by conventional analysis. We resolved their relative contributions to the fluorescent signal by a method involving linear unmixing based on singular value decomposition of the matrices consisting of dye spectra. Analyses of mouse thymic tissues stained with seven different fluorescent dyes provided clear independent images, and any combination of two or three individual dye images could be used for constructing multicolor images.
Autoimmune diseases involve multiple genes. While functions of these genes are largely unknown, some may be related to an intrinsic hyperresponsiveness of B cells. B-cell responses are controlled by signaling thresholds through the B-cell antigen receptor (BCR) complex. The B1 isoform of type II IgG Fc receptors (FcgammaRIIB1) is exclusively expressed on B cells and serves as a negative regulator for inhibiting BCR-elicited activation. Thus, its allelic variants associated with functional deficits could be examined for possible associations with susceptibility to autoimmune diseases. We found that there are three types of polymorphisms in the reported FcgammaRIIB transcription regulatory regions in mouse strains. Compared to normal healthy mouse strains (group III), autoimmune disease-prone strains (group I) share three deletion sites: two in the promoter region and one in the third intron. Strains (group II) that per se are not autoimmune-prone, but have potentials to accelerate autoimmune diseases share two deletion sites in the third intron: one identical to that in group I and the other unique to group II. These polymorphisms correlated well with extents of down-regulation of FcgammaRIIB1 expression in germinal-center B cells upon stimulation with antigens and up-regulation of IgG antibody responses. Our data imply that these FcgammaRIIB polymorphisms are selected evolutionarily for natural defense against pathogens, and that such polymorphisms may, in turn, form the basis of one aspect of autoimmune susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.