Artist sketches often use multiple
overdrawn
strokes to depict a single intended curve. Humans effortlessly mentally
consolidate
such sketches by detecting groups of overdrawn strokes and replacing them with the corresponding intended curves. While this mental process is near instantaneous, manually annotating or retracing sketches to communicate this intended mental image is highly time consuming; yet most sketch applications are not designed to handle overdrawing and can only operate on overdrawing-free, consolidated sketches. We propose
StripMaker
, a new and robust learning based method for automatic consolidation of raw vector sketches. We avoid the need for an unsustainably large manually annotated learning corpus by leveraging observations about artist workflow and perceptual cues viewers employ when mentally consolidating sketches. We train two perception-aware classifiers that assess the likelihood that a pair of stroke groups jointly depicts the same intended curve: our first classifier is purely local and only accounts for the properties of the evaluated strokes; our second classifier incorporates global context and is designed to operate on approximately consolidated sketches. We embed these classifiers within a consolidation framework that leverages artist workflow: we first process strokes in the order they were drawn and use our local classifier to arrive at an approximate consolidation output, then use the contextual classifier to refine this output and finalize the consolidated result. We validate StripMaker by comparing its results to manual consolidation outputs and algorithmic alternatives. StripMaker achieves comparable performance to manual consolidation. In a comparative study participants preferred our results by a 53% margin over those of the closest algorithmic alternative (67% versus 14%, other/neither 19%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.