Transmembrane (TM) proteins localized at the plasma membrane, such as transporters and receptors, play important roles in regulating the selective permeability of the blood–brain barrier (BBB). The purpose of the present study was to clarify the differences in the expression levels of TM proteins in the plasma membrane between two established human BBB model cell lines, hCMEC/D3 and HBMEC/ciβ, in order to assist researchers in selecting the most appropriate cell line for particular purposes. We first confirmed that plasma membranes could be enriched sufficiently for a quantitative proteomics study by using the Plasma Membrane Protein Extraction Kit provided by BioVision with a modified protocol. This method was applied to hCMEC/D3 and HBMEC/ciβ cells, and fractions were used for untargeted quantitative proteomics based on sequential window acquisition of all theoretical fragment-ion spectra. In the plasma membrane fractions, 345 TM proteins were quantified, among which 135 showed significant expression differences between the two cell lines. In hCMEC/D3 cells, amino acid transporters SNAT1, SNAT2, SNAT5, ASCT1, CAT1, and LAT1; adenosine 5′-triphosphate-binding cassette transporters P-gp and MRP4; and GLUT1 were more highly expressed. The transferrin receptor expression was also 4.56-fold greater in hCMEC/D3 cells. In contrast, HBMEC/ciβ cells expressed greater levels of IgG transporter neonatal Fc receptor, as well as tight-junction proteins PECAM1, JAM1, JAM3, and ESAM. Our results suggest that hCMEC/D3 cells have greater efflux transport, amino acid transport, and transferrin receptor-mediated uptake activities, whereas HBMEC/ciβ cells have greater IgG-transport activity and tight-junction integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.