We investigated a V-based electrode for the realization of low ohmic-contact resistivity in n-type AlGaN with a high AlN molar fraction characterized by the circular transmission line model. The contact resistivity of n-type Al0.62Ga0.38N prepared using the V/Al/Ni/Au electrode reached 1.13 × 10−6 Ω cm2. Using this electrode, we also demonstrated the fabrication of UV light-emitting diodes (LEDs) with an emission wavelength of approximately 300 nm. An operating voltage of LED prepared using a V/Al/Ni/Au electrode was 1.6 V lower at 100 mA current injection than that prepared using a Ti/Al/Ti/Au electrode, with a specific contact resistance of approximately 2.36 × 10−4 Ω cm2 for n-type Al0.62Ga0.38N.
High-performance AlGaN/AlGaN hetero-field-effect-transistor (HFET)-type photosensors with high photosensitivity were fabricated using p-type GaN comprising three-dimensional island crystals. The p-type GaN layers were grown on AlGaN layers at a high AlN molar fraction, and the area of p-type GaN comprising three-dimensional island crystals increased as the thickness of the p-type GaN film decreased, resulting in a reduced p-type GaN coverage ratio. The p-type GaN layers comprising three-dimensional island crystals and showing low coverage ratios were then used to fabricate HFET-type photosensors with high photosensitivity. A high light sensitivity of 1.5 × 104 A/W was obtained at a source–drain voltage (V
SD) of 0.5 V for a photosensor with a p-type GaN thickness of 20 nm. Moreover, the dark current was suppressed to 10−10 A/mm and the photosensor achieved an extremely high photocurrent to dark current density ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.