A previous genome-wide association study (GWAS) performed in 963 Japanese individuals (487 primary biliary cholangitis [PBC] cases and 476 healthy controls) identified TNFSF15 (rs4979462) and POU2AF1 (rs4938534) as strong susceptibility loci for PBC. In this study, we performed GWAS in additional 1,923 Japanese individuals (894 PBC cases and 1,029 healthy controls), and combined the results with the previous data. This GWAS, together with a subsequent replication study in an independent set of 7,024 Japanese individuals (512 PBC cases and 6,512 healthy controls), identified PRKCB (rs7404928) as a novel susceptibility locus for PBC (odds ratio [OR] = 1.26, P = 4.13 × 10-9). Furthermore, a primary functional variant of PRKCB (rs35015313) was identified by genotype imputation using a phased panel of 1,070 Japanese individuals from a prospective, general population cohort study and subsequent in vitro functional analyses. These results may lead to improved understanding of the disease pathways involved in PBC, forming a basis for prevention of PBC and development of novel therapeutics.
Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identified six susceptibility loci for PBC. Here, in order to further elucidate the genetic architecture of PBC, a GWAS was performed on an additional independent sample set, then a genome-wide meta-analysis with our previous GWAS was performed based on a whole-genome single nucleotide polymorphism (SNP) imputation analysis of a total of 4,045 Japanese individuals (2,060 cases and 1,985 healthy controls). A susceptibility locus on chromosome 3q13.33 (including ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, and CD80) was previously identified both in the European and Chinese populations and was replicated in the Japanese population (OR = 0.7241, P = 3.5 × 10−9). Subsequent in silico and in vitro functional analyses identified rs2293370, previously reported as the top-hit SNP in this locus in the European population, as the primary functional SNP. Moreover, e-QTL analysis indicated that the effector gene of rs2293370 was Protein O-Glucosyltransferase 1 (POGLUT1) (P = 3.4 × 10−8). This is the first study to demonstrate that POGLUT1 and not CD80 is the effector gene regulated by the primary functional SNP rs2293370, and that increased expression of POGLUT1 might be involved in the pathogenesis of PBC.
Introduction. This study examined whether magnifying endoscopy with NBI observation (ME-NBI) could be useful selecting the appropriate treatment for submucosal invasive cancer (SM cancer). Patients and Methods. We analyzed 515 cases of colon tumors excised endoscopically or surgically. We classified capillary network pattern into four types according to the degree of dilatation, irregularity, and distribution of microcapillary features. Results. The comparison of capillary pattern and histological features revealed microcapillary networks by using confocal laser-scanning microscopy and ME-NBI in intramucosal lesion or SM cancer with remnant neoplastic glands at the superficial layer. In contrast, the network was absent in SM cancer with desmoplastic reactions, which invaded deeper into the submucosal layer. Conclusions. The remaining microcapillary network is designed to maintain the architecture of neoplastic glands. Consequently, loss of this network could correlate with depth of tumor invasion and desmoplastic reaction. Therefore, we can decide the appropriate treatment by using ME-NBI method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.