Vitamin D metabolites influence the expression of various genes involved in calcium homeostasis, cell differentiation, and regulation of the immune system. Expression of these genes is mediated by the activation of the nuclear vitamin D receptor (VDR). Previous studies have shown that a hormonally active form of vitamin D, 1␣,25-dihydroxyvitamin D3, exerts anticoagulant effects in cultured monocytic cells. To clarify whether activation of VDR plays any antithrombotic actions in vivo, hemostatic/thrombogenic systems were examined in normocalcemic VDR knock-out (KO) mice on a high calcium diet and compared with wild type and hypocalcemic VDRKO mice that were fed a regular diet. Platelet aggregation was enhanced significantly in normocalcemic VDRKO mice compared with wild type and hypocalcemic VDRKO mice. Aortic endothelial nitric-oxide (NO) synthase expression and urinary NOx excretions were reduced in hypocalcemic VDRKO mice, but not in normocalcemic VDRKO mice. Northern blot and RT-PCR analyses revealed that the gene expression of antithrombin in the liver as well as that of thrombomodulin in the aorta, liver and kidney was down-regulated in hypo-and normocalcemic VDRKO mice. Whereas tissue factor mRNA expression in the liver and kidney was up-regulated in VDRKO mice regardless of plasma calcium level. Furthermore, VDRKO mice manifested an exacerbated multi-organ thrombus formation after exogenous lipopolysaccharide injection regardless of the calcemic conditions. These results demonstrate that activation of nuclear VDR elicits antithrombotic effects in vivo, and suggest that the VDR system may play a physiological role in the maintenance of antithrombotic homeostasis.
During blood feeding, mosquitoes inject saliva containing a mixture of molecules that inactivate or inhibit various components of the hemostatic response to the bite injury as well as the inflammatory reactions produced by the bite, to facilitate the ingestion of blood. However, the molecular functions of the individual saliva components remain largely unknown. Here, we describe anopheline antiplatelet protein (AAPP) isolated from the saliva of Anopheles stephensi, a human malaria vector mosquito. AAPP exhibited a strong and specific inhibitory activity toward collagen-induced platelet aggregation. The inhibitory mechanism involves direct binding of AAPP to collagen, which blocks platelet adhesion to collagen and inhibits the subsequent increase in intracellular Ca(2+) concentration ([Ca(2+)]i). The binding of AAPP to collagen effectively blocked platelet adhesion via glycoprotein VI (GPVI) and integrin alpha(2)beta(1). Cell adhesion assay showed that AAPP inhibited the binding of GPVI to collagen type I and III without direct effect on GPVI. Moreover, intravenously administered recombinant AAPP strongly inhibited collagen-induced platelet aggregation ex vivo in rats. In summary, AAPP is a malaria vector mosquito-derived specific antagonist of receptors that mediate the adhesion of platelets to collagen. Our study may provide important insights for elucidating the effects of mosquito blood feeding against host hemostasis.
Changes in cytosolic Ca2+ concentrations evoke a wide range of cellular responses and intracellular Ca(2+)-binding proteins are the key molecules to transduce Ca2+ signaling via enzymatic reactions or modulation of protein/protein interations (Fig.1). The EF hand proteins, like calmodulin and S100 proteins, are considered to exert Ca(2+)-dependent actions in the nucleus or the cytoplasm. The Ca2+/phospholipid binding proteins are classified into two groups, the annexins and the C2 region proteins. These proteins, distributed mainly in the cytoplasm, translocate to the plasma membrane in response to an increase in cytosolic Ca2+ and function in the vicinity of the membrane. Ca2+ storage proteins in the endoplasmic or sarcoplasmic reticulum provide the high Ca2+ capacity of the Ca2+ store sites, which regulate intracellular Ca2+ distribution. The variety and complexity of Ca2+ signaling result from the cooperative actions of specific Ca(2+)-binding proteins. This review describes biochemical properties of intracellular Ca(2+)-binding proteins and their proposed roles in mediating Ca2+ signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.