In this paper published online on March 19 th and in print in the April issue, the reference SNP identification number for a FUT2 variant is presented incorrectly in the Summary and on page 2. In each of the following sentences, ''rs6022662'' should be replaced with ''rs602662'': ''Polymorphisms in the ALPL gene (rs4654748, p ¼ 8.30 3 10 À18 ) were associated with vitamin B6 and FUT2 (rs6022662, p ¼ 2.83 3 10 À20 ) with vitamin B12 serum levels.'' and ''The top SNP in this locus, rs6022662 (p meta ¼ 2.43 3 10 À12 ), mapped to exon 2 of the fucosyltransferase 2 (FUT2) gene (Figure S2A).'' The authors regret this error.
This research investigates the influence of demographic factors on human genetic sub-structure. In our discovery cohort, we show significant demographic trends for decreasing autozygosity associated with population variation in chronological age. Autozygosity, the genomic signature of consanguinity, is identifiable on a genome-wide level as extended tracts of homozygosity. We identified an average of 28.6 tracts of extended homozygosity greater than 1 Mb in length in a representative population of 809 unrelated North Americans of European descent ranging in chronological age from 19–99 years old. These homozygous tracts made up a population average of 42 Mb of the genome corresponding to 1.6% of the entire genome, with each homozygous tract an average of 1.5 Mb in length. Runs of homozygosity are steadily decreasing in size and frequency as time progresses (linear regression, p<0.05). We also calculated inbreeding coefficients and showed a significant trend for population-wide increasing heterozygosity outside of linkage disequilibrium. We successfully replicated these associations in a demographically similar cohort comprised of a subgroup of 477 Baltimore Longitudinal Study of Aging participants. We also constructed statistical models showing predicted declining rates of autozygosity spanning the 20th century. These predictive models suggest a 14.0% decrease in the frequency of these runs of homozygosity and a 24.3% decrease in the percent of the genome in runs of homozygosity, as well as a 30.5% decrease in excess homozygosity based on the linkage pruned inbreeding coefficients. The trend for decreasing autozygosity due to panmixia and larger effective population sizes will likely affect the frequency of rare recessive genetic diseases in the future. Autozygosity has declined, and it seems it will continue doing so.
Background Carotid-femoral pulse wave velocity (CFPWV) is a heritable measure of aortic stiffness that is strongly associated with increased risk for major cardiovascular disease events. Methods and Results We conducted a meta-analysis of genome-wide association data in 9 community-based European ancestry cohorts consisting of 20,634 participants. Results were replicated in 2 additional European ancestry cohorts involving 5,306 participants. Based on a preliminary analysis of 6 cohorts, we identified a locus on chromosome 14 in the 3′-BCL11B gene desert that is associated with CFPWV (rs7152623, minor allele frequency = 0.42, beta=−0.075±0.012 SD/allele, P = 2.8 x 10−10; replication beta=−0.086±0.020 SD/allele, P = 1.4 x 10−6). Combined results for rs7152623 from 11 cohorts gave beta=−0.076±0.010 SD/allele, P=3.1x10−15. The association persisted when adjusted for mean arterial pressure (beta=−0.060±0.009 SD/allele, P = 1.0 x 10−11). Results were consistent in younger (<55 years, 6 cohorts, N=13,914, beta=−0.081±0.014 SD/allele, P = 2.3 x 10−9) and older (9 cohorts, N=12,026, beta=−0.061±0.014 SD/allele, P=9.4x10−6) participants. In separate meta-analyses, the locus was associated with increased risk for coronary artery disease (hazard ratio [HR]=1.05, confidence interval [CI]=1.02 to 1.08, P=0.0013) and heart failure (HR=1.10, CI=1.03 to 1.16, P=0.004). Conclusions Common genetic variation in a locus in the BCL11B gene desert that is thought to harbor one or more gene enhancers is associated with higher CFPWV and increased risk for cardiovascular disease. Elucidation of the role this novel locus plays in aortic stiffness may facilitate development of therapeutic interventions that limit aortic stiffening and related cardiovascular disease events.
Genome-wide association studies (GWAS) are a valuable approach to understanding the genetic basis of complex traits. One of the challenges of GWAS is the translation of genetic association results into biological hypotheses suitable for further investigation in the laboratory. To address this challenge, we introduce Network Interface Miner for Multigenic Interactions (NIMMI), a network-based method that combines GWAS data with human protein-protein interaction data (PPI). NIMMI builds biological networks weighted by connectivity, which is estimated by use of a modification of the Google PageRank algorithm. These weights are then combined with genetic association p-values derived from GWAS, producing what we call ‘trait prioritized sub-networks.’ As a proof of principle, NIMMI was tested on three GWAS datasets previously analyzed for height, a classical polygenic trait. Despite differences in sample size and ancestry, NIMMI captured 95% of the known height associated genes within the top 20% of ranked sub-networks, far better than what could be achieved by a single-locus approach. The top 2% of NIMMI height-prioritized sub-networks were significantly enriched for genes involved in transcription, signal transduction, transport, and gene expression, as well as nucleic acid, phosphate, protein, and zinc metabolism. All of these sub-networks were ranked near the top across all three height GWAS datasets we tested. We also tested NIMMI on a categorical phenotype, Crohn’s disease. NIMMI prioritized sub-networks involved in B- and T-cell receptor, chemokine, interleukin, and other pathways consistent with the known autoimmune nature of Crohn’s disease. NIMMI is a simple, user-friendly, open-source software tool that efficiently combines genetic association data with biological networks, translating GWAS findings into biological hypotheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.