This paper attempts to improve upon the range of applicability and predictability of the empirical highly accelerated lifetime testing (HALT) equation that has been traditionally used to estimate time dependent breakdown strength performance in multilayer ceramic capacitors (MLCC) and integrated thin film capacitor structures. The present and traditional HALT equation shows evidence of being limited in thin dielectric layers under high fields, for example, in high capacitance MLCCs. When the traditional HALT equations are applied to MLCCs with higher operating electric fields, there are often field dependent voltage acceleration factors resulting in ambiguous data analysis. Here, we introduce a physical model to account for a critical ionic space charge accumulation preceded by the ionic hopping or electromigration of oxygen vacancies leading to an ultimate increase in leakage current typical of dielectric resistance degradation. Mean time to failure degradation data on experimental capacitors indicates superior predictions with the new non-linear equation than with the traditional HALT equation to provide more accurate and simpler testing in future components. It is further noted that this approach may be applicable to many capacitive devices that operate under a high bias and can have ionic space charge accumulation at interfaces prior to breakdown.
Although it has been suggested that infiltration of water vapor into multi-layer ceramic capacitors (MLCCs) can increase leakage current, few studies have reported how this increase is directly linked to the infiltration. In this work we performed accelerated temperature and humidity stress tests with heavy water as a tracer and investigated, using secondary ion mass spectrometry, whether traces of water vapor could be detected in MLCCs. In particular, deuterium was found in areas where an augmented leakage current was detected. It is clear that infiltration of water vapor into MLCCs increased the leakage current. This finding could lead to further improvements in MLCCs.
To make electrical devices, such as smartphones and automotive devices, more functional, the mechanism of electrical reliability in multi-layer ceramic capacitors (MLCCs) under high temperature, high humidity, and electric field bias environments has been studied. Although it has been presumed that hydrogen influences this mechanism, it is difficult to analyze hydrogen itself. Therefore, we investigated BaTiO 3 -based dielectrics in which the leakage current increases by conducting highly accelerated temperature and humidity stress tests using heavy water (D 2 O) as a tracer instead of light water (H 2 O) and secondary ion mass spectrometry analysis. We report the detection of deuterium in the dielectrics between the inner electrodes where the leakage current increased, and deuterium was biased toward the internal electrode on the cathode side. These findings can help further improve the reliability of MLCCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.