The present study was undertaken to determine whether the non-peptide V2 arginine vasopressin (AVP) antagonist 5-dimethylamino- 1[4-(2-methylbenzoylamino)benzoyl]-2,3,4,5-tetrahydro-1H-benzazepi ne hydrochloride (OPC-31260) produces water diuresis and improves hyponatremia in patients with the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Eleven patients (9 males and 2 females, 64 +/- 3.5 yr) with SIADH were included in the present protocol, which was comprised of 3 successive days. Day 1 was a control day, and on days 2 and 3 OPC-31260 was administered intravenously. Five blood and urine collections were made at 1-2 h intervals during the 6 h observation period each day. A single administration of 0.25 and 0.5 mg/kg OPC-31260 increased the 4 h cumulative urine volume and decreased urinary osmolality to below 225 mOsm/kg H2O. Such a diuretic effect was independent of an increase in urinary solute excretions. This aquaresis by 0.5 mg/kg OPC-31260 caused a significant increase in serum sodium level by approximately 3 mEq/L. The antagonistic effect of OPC-31260 lasted for 4 h when it was given intravenously. These results indicate that OPC-31260 is an effective therapeutic agent for hyponatremia in patients with SIADH.
Background:The cardiovascular prognosis of heart failure with preserved ejection fraction (HFpEF) has been shown to be similar to that of heart failure with reduced ejection fraction (HFrEF). It is unknown which factors predict cardiovascular outcome in HFpEF. We tested the hypothesis that the abnormal pattern of circadian blood pressure (BP) rhythm known as the riser BP pattern is associated with adverse outcomes in HFpEF. Methods and Results:We performed a prospective, observational cohort study of hospitalized HF patients who underwent ambulatory BP monitoring (ABPM). Five hundred and sixteen hospitalized HF patients (age, 69±13 years; male, n=321 [62%]; female, n=195 [38%]) were followed up for a median 20.9 months. The composite outcome consisting of all-cause mortality and cardiovascular events was observed in 220 patients. On Kaplan-Meier analysis, the riser BP pattern subgroup had a significantly higher incidence of the composite outcome than the other subgroups of HFpEF patients (HR, 3.01; 95% CI: 1.54-6.08, P<0.01), but not the HFrEF patients. Conclusions:The riser BP pattern was found to be a novel predictor of cardiovascular outcome in HFpEF patients.
The riser pattern was associated with mild CI in HF patients. An abnormal circadian BP rhythm in HF patients is clinically significant as a potential indicator of subclinical brain damage.
Macrophages are cellular mediators of vascular inflammation and are involved in the formation of atherosclerotic plaques. These immune cells secrete proteases such as matrix metalloproteinases and cathepsins that contribute to disease formation and progression. Here, we demonstrate that activity-based probes (ABPs) targeting cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes can also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. Methods: Macrophage-rich carotid lesions were induced in FVB mice fed on a high-fat diet by streptozotocin injection followed by ligation of the left common carotid artery. Mice with carotid atherosclerotic plaques were injected with the optical or dual-modality probes BMV109 and BMV101, respectively, via the tail vein and noninvasively imaged by optical and small-animal PET/CT at different time points. After noninvasive imaging, the murine carotid arteries were imaged in situ and ex vivo, followed by immunofluorescence staining to confirm target labeling. Additionally, human carotid plaques were topically labeled with the probe and analyzed by both sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunofluorescence staining to confirm the primary targets of the probe. Results: Quantitative analysis of the signal intensity from both optical and PET/CT imaging showed significantly higher levels of accumulation of BMV109 and BMV101 (P , 0.005 and P , 0.05, respectively) in the ligated left carotid arteries than the right carotid or healthy arteries. Immunofluorescence staining for macrophages in cross-sectional slices of the murine artery demonstrated substantial infiltration of macrophages in the neointima and adventitia of the ligated left carotid arteries compared with the right. Analysis of the human plaque tissues by sodium dodecyl sulfate polyacrylamide gel electrophoresis confirmed that the primary targets of the probe were cathepsins X, B, S, and L. Immunofluorescence labeling of the human tissue with the probe demonstrated colocalization of the probe with CD68, elastin, and cathepsin S, similar to that observed in the experimental carotid inflammation murine model. Conclusion: We demonstrate that ABPs targeting the cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes could also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations. Therefore, ABPs targeting the cysteine cathepsins are potentially valuable new reagents for rapid and noninvasive imaging of atherosclerotic disease progression and plaque vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.