Insertion duplication mutagenesis and allelic replacement mutagenesis are among the most commonly utilized approaches for targeted mutagenesis in bacteria. However, both techniques are limited by a variety of factors that can complicate mutant phenotypic studies. To circumvent these limitations, multiple markerless mutagenesis techniques have been developed that utilize either temperature-sensitive plasmids or counterselectable suicide vectors containing both positive-and negative-selection markers. For many species, these techniques are not especially useful due to difficulties of cloning with Escherichia coli and/or a lack of functional negative-selection markers. In this study, we describe the development of a novel approach for the creation of markerless mutations. This system employs a cloning-independent methodology and should be easily adaptable to a wide array of Gram-positive and Gram-negative bacterial species. The entire process of creating both the counterselection cassette and mutation constructs can be completed using overlapping PCR protocols, which allows extremely quick assembly and eliminates the requirement for either temperature-sensitive replicons or suicide vectors. As a proof of principle, we used Streptococcus mutans reference strain UA159 to create markerless in-frame deletions of 3 separate bacteriocin genes as well as triple mutants containing all 3 deletions. Using a panel of 5 separate wild-type S. mutans strains, we further demonstrated that the procedure is nearly 100% efficient at generating clones with the desired markerless mutation, which is a considerable improvement in yield compared to existing approaches.Streptococcus mutans is a Gram-positive bacterial species that resides within multispecies oral biofilms formed on human tooth surfaces. It is also considered to be one of the principal species associated with dental caries initiation (6,7,34,35,44, 47,52). S. mutans genetic research has benefited tremendously from the many genetic tools that have been adapted for use in studies of the organism (4,5,13,15,22,25,26,29,33,45,51). For genetic studies of S. mutans, defined mutations are usually engineered in either of two ways: insertion duplication mutagenesis via single-crossover homologous recombination or marked allelic replacement mutagenesis using double-crossover homologous recombination (25,27,41). Both approaches are highly reliable strategies for mutagenesis and are simple to engineer, but they also have the potential to create unwanted artifacts that could influence the outcome of a genetic study. For example, insertion duplication mutations often result in the production of truncated proteins. Rarely is it known with certainty whether the protein fragments actually influence mutant phenotypes. Furthermore, due to significant polar effects downstream of the mutation site, both insertion duplication mutagenesis and allelic replacement mutagenesis are of limited utility within operons. In some cases, these issues have been addressed by creating allelic replacement mut...
Our results suggest that application of ozonated water may be useful in reducing the number of C. albicans on denture plates.
Recently, ultrasound-targeting microbubble destruction has been employed in molecular gene therapy, and a new potent nonviral gene transfer method known as 'sonoporation' has been developed. We investigated the efficiency of sonoporation toward growth inhibition of human gingival squamous carcinoma cell line, Ca9-22, in vitro and in vivo. The cytotoxicity of bleomycin (BLM) was investigated using flow-cytometric analysis and Hoechst's staining in vitro assay systems. We found that the delivery of BLM by sonoporation induced cytotoxic effect toward Ca9-22 cells in vitro. Our in vivo results showed that tumors nearly disappeared in Ca9-22 cell-implanted nude KSN/slc mice treated with a low dose of BLM followed by sonoporation during the 4-week experimental period. Histological analysis revealed that the cytotoxic effect was mainly apoptosis. We previously reported that the cytolethal distending toxin B (cdtB) from Actinobacillus actinomycetemcomitans, a periodontopathic bacterium, is responsible for cell cycle arrest and apoptosis in vitro. Thus, we used sonoporation to transfect a cdtB-expressing plasmid into Ca9-22 cells and examined cell viability in vitro and in vivo. We found that an administration of cdtB-expressing plasmid followed by sonoporationinduced marked growth inhibition of Ca9-22 cells and apoptotic cells were also observed in vitro and in vivo. These findings suggest that local administration of cytotoxic agents with sonoporation is a useful method for molecular cancer therapy.
The Streptococcus mutans hdrRM operon encodes a novel two-gene regulatory system induced by high cell density. Previous studies identified hdrM as the only known negative regulator of competence development in S. mutans. In the present study, we demonstrated that the HdrRM system bypasses the prototypical competence gene regulators ComC and ComDE in the transcriptional regulation of the competence-specific sigma factor comX and the late competence genes. Similarly, the HdrRM system can abrogate the requirement for ComE to produce the bacteriocin mutacin IV. To further probe the regulatory mechanism of hdrRM, we created an hdrR overexpression strain and showed that it could reproduce each of the hdrM competence and mutacin phenotypes, indicating that HdrM acts as a negative regulator of HdrR activity. Using a mutacin IV-luciferase reporter, we also demonstrated that the hdrRM system utilizes the same promoter elements recognized by ComE and thus appears to comprise a novel regulatory pathway parallel to ComCDE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.