Naturally occurring CD25(+)CD4(+) regulatory T cells are engaged in the maintenance of immunological self-tolerance and down-regulation of various immune responses. Recent studies with mice showed that Foxp3, which encodes the transcription factor Scurfin, is a master regulatory gene for the development and function of CD25(+)CD4(+) regulatory T cells. Here we examined the role of FOXP3 in human CD25(+)CD4(+) regulatory T cells. The FOXP3 gene and its protein product were preferentially expressed in peripheral CD25(+)CD4(+) T cells, in particular CD25(+)CD45RO(+)CD4(+) T cells in normal individuals and, interestingly, in some human T cell leukemia virus type 1-infected T cell lines, which constitutively express CD25. TCR stimulation of CD25(-)CD45RO(-)CD4(+) naive T cells failed to elicit FOXP3 expression at the gene or protein level. Ex vivo retroviral gene transfer of FOXP3, on the other hand, converted peripheral CD25(-)CD45RO(-)CD4(+) naive T cells into a regulatory T cell phenotype similar to CD25(+)CD4(+) regulatory T cells. For example, FOXP3-transduced T cells exhibited impaired proliferation and production of cytokines including IL-2 and IL-10 upon TCR stimulation, up-regulated the expression of regulatory T cell-associated molecules such as CD25 and CTL-associated antigen-4 and suppressed in vitro proliferation of other T cells in a cell-cell contact-dependent manner. Thus, human FOXP3 is a crucial regulatory gene for the development and function of CD25(+)CD4(+) regulatory T cells, and can be used as their reliable marker. Furthermore, regulatory T cells de novo produced from normal naive T cells by FOXP3 transduction can be instrumental for treatment of autoimmune/inflammatory diseases and negative control of various immune responses.
IntroductionProgrammed death-1 (PD-1), a member of the CD28 costimulatory receptor superfamily, inhibits T-cell activity by providing a second signal to T cells in conjunction with signaling through the T-cell receptor. 1 To date, B7-H1 and B7-DC have been identified as ligands for PD-1 (PD-Ls). During chronic viral infection, PD-1 is selectively up-regulated by the exhausted T cells, and blockade of this pathway restores CD8 ϩ T-cell function and reduces viral load. 2 This signaling system has been recently highlighted in the research of human immunodeficiency virus (HIV) infection. [3][4][5][6] In addition, PD-1 is indicated to be involved in the evasion of tumor immunity. [7][8][9][10] Hodgkin lymphoma (HL) is characterized by massive reactive infiltrates surrounding Hodgkin/Reed-Sternberg (H/RS) cells. HL patients are well recognized as having defective cellular immunity; they are susceptible to bacterial, fungal, and viral infections, and in vitro studies show depressed T-cell proliferation and reduced synthesis of Th1 cytokines. 11 We report here that PD-1-PD-L signaling system is operative in patients with HL, and tumor-infiltrating T cells around H/RS cells seem to be kept in balance by this inhibitory signaling. Our findings illuminate the mechanism for deficient cellular immunity observed in HL patients, and propose a potentially effective immunologic strategy for the treatment of HL. Methods Cell lines and clinical sample preparationThe following cell lines were described previously 12,13 : HL cell lines KM-H2, L428, and HDLM-2; anaplastic large cell lymphoma (ALCL) cell line DEL; follicular lymphoma cell line FL-218; diffuse large B-cell lymphoma (DLBCL) cell line KIS-1; Burkitt lymphoma cell lines Daudi, Raji, Middle 91, Tree 92, and Ramos; adult T-cell leukemia/lymphoma cell line HUT 102; and acute T-cell leukemia cell line Jurkat. LCL-OHN is an Epstein-Barr virus (EBV)-transformed lymphoblastoid B-cell line (LCL). Peripheral blood samples were collected from 19 HL patients, 12 B-NHL patients, and 11 healthy volunteers after informed consent was obtained in accordance with the Declaration of Helsinki. This study is approved by the institutional review board of Kyoto University. After removing red blood cells using ACK lysis buffer, leukocytes were subjected to flow cytometry. For immunohistochemistry, tissue specimens were snap-frozen in OCT compound (TissueTek, Tokyo, Japan) and stored at Ϫ80°C. Reverse transcription-polymerase chain reaction, flow cytometry, and immunohistochemistryTotal RNA was isolated from cells with Trizol (Invitrogen, Carlsbad, CA), and cDNA was synthesized using MultiScribe Reverse Transcriptase (Applied Biosystems, Foster City, CA). PCR assays were performed by the conventional method using Taq polymerase (TaKaRa Biotechnology, Shiga, Japan). For flow cytometry, cells were analyzed on a FACScan (Becton Dickinson, Mansfield, MS). The following antibodies were used: PEconjugated B7-H1 and B7-DC (eBioscience, San Diego, CA), FITC-PD-1 (BD Pharmingen, San Diego, CA), PC5-CD4 a...
Although adoptive transfer of cytotoxic T lymphocytes (CTL) offer a promising cancer therapeutic direction, the generation of antigen-specific CTL from patients has faced difficulty in efficient expansion in ex vivo culture. To resolve this issue, several groups have proposed that induced pluripotent stem cell technology be applied for the expansion of antigen-specific CTL, which retain expression of the same T-cell receptor as original CTL. However, in these previous studies, the regenerated CTL are mostly of the CD8aa þ innate type and have less antigen-specific cytotoxic activity than primary CTL. Here we report that, by stimulating purified iPSC-derived CD4/CD8 double-positive cells with anti-CD3 antibody, T cells expressing CD8ab were generated and exhibited improved antigen-specific cytotoxicity compared with CD8aa þ CTL. Failure of CD8ab T-cell production using the previous method was found to be due to killing of doublepositive cells by the double-negative cells in the mixed cultures. We found that WT1 tumor antigen-specific CTL regenerated by this method prolonged the survival of mice bearing WT1-expressing leukemic cells. Implementation of our methods may offer a useful clinical tool. Cancer Res; 76(23); 6839-50. Ó2016 AACR.
Background Blocking the PD-1 pathway induces immune-related adverse events (irAEs) which often involve the thyroid gland (thyroid irAEs). Clinical features of a thyroid irAE including its predictability and relationship to prognosis remain to be elucidated. Methods Two hundred consecutive patients treated with nivolumab at Kyoto University Hospital between September 1, 2014 and August 31, 2017 were included in a retrospective cohort study. We systematically determined and classified subclinical and overt thyroid irAEs based on data collected of serum free T4 and TSH levels. Baseline characteristics and detailed clinical data were analyzed, and analyses of overall survival (OS) excluded patients censored within 1 month from the first administration of nivolumab. Results Sixty-seven patients (33.5%) developed thyroid irAEs and these were divided into a subclinical thyroid irAE group ( n = 40, 20.0%) and an overt thyroid irAE group ( n = 27, 13.5%). Patients with thyroid uptake of FDG-PET before treatment showed high incidences of overt thyroid irAE (adjusted odds ratio 14.48; 95% confidence interval [CI] 3.12–67.19), while the same relationship was not seen with subclinical thyroid irAE. Regarding the total cohort, the thyroid irAE (+) group had a significantly longer median OS than the thyroid irAE (−) group (16.1 versus 13.6 months, hazard ratio [HR] 0.61; 95% CI 0.39–0.93). In 112 non-excluded patients with lung cancer, the thyroid irAE (+) group similarly had a longer median OS than the thyroid irAE (−) group (not reached versus 14.2 months, HR 0.51; 95% CI 0.27–0.92). However, this observation was not seen in 41 non-excluded patients with malignant melanoma (12.0 versus 18.3 months, HR 1.54; 95% CI 0.67–3.43). Conclusions By thyroid uptake of FDG-PET, overt thyroid irAEs could be predicted before nivolumab therapy. Thyroid irAEs related to good prognosis in lung cancer but might be inconclusive in malignant melanoma.
Natural alpha interferon (IFN-␣)-producing cells (IPCs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.