Slider-crank mechanisms are frequently used to convert between linear and rotational motion. When a slidercrank mechanism creates linear piston motion, a side force occurs between the cylinder sides and the piston head. The side force can be reduced using a Scotch yoke mechanism. However a Scotch yoke mechanism requires two parallel opposed sliders, therefore it is difficult to keep a precision and structure complicated each machine elements. This side force causes various problems, so authors have proposed an orthogonal double-slider joint mechanism to reduce the side force acting on the piston. We build three types of water-pump to investigate efficiency differences among the driving mechanism types, namely, a slider-crank mechanism with a crosshead, a Scotch yoke mechanism, and the orthogonal double-slider joint mechanism. We measure the input torque needed to drive a water-pump under same conditions for stroke, cylinder cross-section, and crank rotational speed. To investigate the influence of sliding frictional resistance acting on the crosshead, we compare results between the cases of driving by the slider-crank mechanism with a crosshead and the orthogonal double-slider joint mechanism. To investigate the influence of structural differences, we compare results between the cases of driving by the Scotch yoke mechanism and the orthogonal double-slider joint mechanism. We find that among the three mechanisms the orthogonal double-slider joint mechanism can drive the water-pump with the least input torque.
A Scotch yoke mechanism is often used instead of a slider-crank mechanism to obtain high output power. The kinematics of the Scotch yoke mechanism are characterized by elements translating along two orthogonal axes. This is realized by two slider guides placed in parallel in each direction. As a result, the Scotch yoke mechanism achieves high power transmission with high rigidity. A drawback of this mechanism, however, is that it requires high precision in machining and assembly processes. In this study, an orthogonal double-slider mechanism was developed to solve problems caused by machining and assembly errors.With an L-shaped double slider, the mechanical structure is simple and this mechanism has the advantage of lower driving torque compared with a slider-crank mechanism. The developed mechanism is derived from a Scotch yoke mechanism, but the major difference between them is the arrangement of the sliders and slider guides. This study is the first to investigate the effect of the arrangements of slider guides on the driving characteristics of the mechanism. Through measurements of the force acting on slider guides and their deflection, the effect of the slider configuration was experimentally verified as the number of the slider guides was reduced from the maximum of four. In addition, when the mechanism was used in a water pump, the change in shear force acting on the slider guide in the direction of piston translation was investigated as the number of slider guides was reduced. The deflection of the slider guides for the piston was measured under static conditions. Also, the starting force from a stationary state was measured, revealing that the load acting on the mechanism was reduced by removing one of the slider guides arranged in parallel.No.20-00391
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.