Ran/TC4 is a small nuclear G protein that forms a complex with the chromatin-bound guanine nucleotide release factor RCC1 (ref. 2). Loss of RCC1 causes defects in cell cycle progression, RNA export and nuclear protein import. Some of these can be suppressed by overexpression of Ran/TC4 (ref. 1), suggesting that Ran/TC4 functions downstream of RCC1. We have searched for proteins that bind Ran/TC4 by using a two-hybrid screen, and here we report the identification of RanBP2, a novel protein of 3,224 residues. This giant protein comprises an amino-terminal 700-residue leucine-rich region, four RanBP1-homologous (refs 9, 10) domains, eight zinc-finger motifs similar to those of NUP153 (refs 11, 12), and a carboxy terminus with high homology to cyclophilin. The molecule contains the XFXFG pentapeptide motif characteristic of nuclear pore complex (NPC) proteins, and immunolocalization suggests that RanBP2 is a constituent of the NPC. The fact that NLS-mediated nuclear import can be inhibited by an antibody directed against RanBP2 supports a functional role in protein import through the NPC.
Loss of genomic imprinting is involved in a number of developmental abnormalities and cancers. ZAC is an imprinted gene expressed from the paternal allele of chromosome 6q24 within a region known to harbor a tumor suppressor gene for several types of neoplasia. p57KIP2 (CDKN1C) is a maternally expressed gene located on chromosome 11p15.5 which encodes a cyclin-dependent kinase inhibitor that may also act as a tumor suppressor gene. Mutations in ZAC and p57KIP2 have been implicated in transient neonatal diabetes mellitus (TNDB) and Beckwith–Wiedemann syndrome, respectively. Patients with these diseases share many characteristics. Here we show that mouse Zac1 and p57Kip2 have a strikingly similar expression pattern. ZAC, a sequence-specific DNA-binding protein, binds within the CpG island of LIT1 (KCNQ1OT1), a paternally expressed, anti-sense RNA thought to negatively regulate p57KIP2 in cis. ZAC induces LIT1 transcription in a methylation-dependent manner. Our data suggest that ZAC may regulate p57KIP2 through LIT1, forming part of a novel signaling pathway regulating cell growth. Mutations in ZAC may, therefore, contribute to Beckwith–Wiedemann syndrome. Furthermore, we find changes in DNA methylation at the LIT1 putative imprinting control region in two patients with TNDB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.