The brain identifies potentially salient features within continuous information streams to process hierarchical temporal events. This requires the compression of information streams, for which effective computational principles are yet to be explored. Backpropagating action potentials can induce synaptic plasticity in the dendrites of cortical pyramidal neurons. By analogy with this effect, we model a self-supervising process that increases the similarity between dendritic and somatic activities where the somatic activity is normalized by a running average. We further show that a family of networks composed of the twocompartment neurons performs a surprisingly wide variety of complex unsupervised learning tasks, including chunking of temporal sequences and the source separation of mixed correlated signals. Common methods applicable to these temporal feature analyses were previously unknown. Our results suggest the powerful ability of neural networks with dendrites to analyze temporal features. This simple neuron model may also be potentially useful in neural engineering applications.
Chunking is the process by which frequently repeated segments of temporal inputs are concatenated into single units that are easy to process. Such a process is fundamental to time-series analysis in biological and artificial information processing systems. The brain efficiently acquires chunks from various information streams in an unsupervised manner; however, the underlying mechanisms of this process remain elusive. A widely-adopted statistical method for chunking consists of predicting frequently repeated contiguous elements in an input sequence based on unequal transition probabilities over sequence elements. However, recent experimental findings suggest that the brain is unlikely to adopt this method, as human subjects can chunk sequences with uniform transition probabilities. In this study, we propose a novel conceptual framework to overcome this limitation. In this process, neural networks learn to predict dynamical response patterns to sequence input rather than to directly learn transition patterns. Using a mutually supervising pair of reservoir computing modules, we demonstrate how this mechanism works in chunking sequences of letters or visual images with variable regularity and complexity. In addition, we demonstrate that background noise plays a crucial role in correctly learning chunks in this model. In particular, the model can successfully chunk sequences that conventional statistical approaches fail to chunk due to uniform transition probabilities. In addition, the neural responses of the model exhibit an interesting similarity to those of the basal ganglia observed after motor habit formation.
Motor cortical microcircuits receive inputs from dispersed cortical and subcortical regions in behaving animals. However, how these inputs contribute to learning and execution of voluntary sequential motor behaviors remains elusive. Here, we analyzed the independent components extracted from the local field potential (LFP) activity recorded at multiple depths of rat motor cortex during reward-motivated movement to study their roles in motor learning. Because slow gamma (30–50 Hz), fast gamma (60–120 Hz), and theta (4–10 Hz) oscillations temporally coordinate task-relevant motor cortical activities, we first explored the behavioral state- and layer-dependent coordination of motor behavior in these frequency ranges. Consistent with previous findings, oscillations in the slow and fast gamma bands dominated during distinct movement states, i.e., preparation and execution states, respectively. However, we identified a novel independent component that dominantly appeared in deep cortical layers and exhibited enhanced slow gamma activity during the execution state. Then, we used the four major independent components to train a recurrent network model for the same lever movements as the rats performed. We show that the independent components differently contribute to the formation of various task-related activities, but they also play overlapping roles in motor learning.
The brain performs various cognitive functions by learning the spatiotemporal salient features of the environment. This learning requires unsupervised segmentation of hierarchically organized spike sequences, but the underlying neural mechanism is only poorly understood. Here, we show that a recurrent gated network of neurons with dendrites can efficiently solve difficult segmentation tasks. In this model, multiplicative recurrent connections learn a context-dependent gating of dendro-somatic information transfers to minimize error in the prediction of somatic responses by the dendrites. Consequently, these connections filter the redundant input features represented by the dendrites but unnecessary in the given context. The model was tested on both synthetic and real neural data. In particular, the model was successful for segmenting multiple cell assemblies repeating in large-scale calcium imaging data containing thousands of cortical neurons. Our results suggest that recurrent gating of dendro-somatic signal transfers is crucial for cortical learning of context-dependent segmentation tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.