Methodology is developed for the automated detection of heated plumes of ethanol vapor with airborne passive Fourier transform infrared spectrometry. Positioned in a fixed-wing aircraft in a downward-looking mode, the spectrometer is used to detect ground sources of ethanol vapor from an altitude of 2000-3000 ft. Challenges to the use of this approach for the routine detection of chemical plumes include (1) the presence of a constantly changing background radiance as the aircraft flies, (2) the cost and complexity of collecting the data needed to train the classification algorithms used in implementing the plume detection, and (3) the need for rapid interferogram scans to minimize the ground area viewed per scan. To address these challenges, this work couples a novel ground-based data collection and training protocol with the use of signal processing and pattern recognition methods based on short sections of the interferogram data collected by the spectrometer. In the data collection, heated plumes of ethanol vapor are released from a portable emission stack and viewed by the spectrometer from ground level against a synthetic background designed to simulate a terrestrial radiance source. Classifiers trained with these data are subsequently tested with airborne data collected over a period of 2.5 years. Two classifier architectures are compared in this work: support vector machines (SVM) and piecewise linear discriminant analysis (PLDA). When applied to the airborne test data, the SVM classifiers perform best, failing to detect ethanol in only 8% of the cases in which it is present. False detections occur at a rate of less than 0.5%. The classifier performs well in spite of differences between the backgrounds associated with the ground-based and airborne data collections and the instrumental drift arising from the long time span of the data collection. Further improvements in classification performance are judged to require increased sophistication in the ground-based data collection in order to provide a better match to the infrared backgrounds observed from the air.
Multivariate calibration models are constructed through the use of Gaussian basis functions to extract relevant information from single-beam spectral data. These basis functions are related by analogy to optical filters and offer a pathway to the direct implementation of the calibration model in the spectrometer hardware. The basis functions are determined by use of a numerical optimization procedure employing genetic algorithms. This calibration methodology is demonstrated through the development of quantitative models in near-infrared spectroscopy. Calibrations are developed for the determination of physiological levels of glucose in two synthetic biological matrixes, and the resulting models are tested by application to external prediction data collected as much as 4 months outside the time frame of the calibration data used to compute the models. The calibrations developed with the Gaussian basis functions are compared to conventional calibration models computed with partial least-squares (PLS) regression. For both data sets, the models based on the Gaussian functions are observed to outperform the PLS models, particularly with respect to calibration stability over time.
Finite impulse response (FIR) filters and finite impulse response matrix (FIRM) filters are evaluated for use in the detection of volatile organic compounds with wide spectral bands by direct analysis of interferogram data obtained from passive Fourier transform infrared (FT-IR) measurements. Short segments of filtered interferogram points are classified by support vector machines (SVMs) to implement the automated detection of heated plumes of the target analyte, ethanol. The interferograms employed in this study were acquired with a downward-looking passive FT-IR spectrometer mounted on a fixed-wing aircraft. Classifiers are trained with data collected on the ground and subsequently used for the airborne detection. The success of the automated detection depends on the effective removal of background contributions from the interferogram segments. Removing the background signature is complicated when the analyte spectral bands are broad because there is significant overlap between the interferogram representations of the analyte and background. Methods to implement the FIR and FIRM filters while excluding background contributions are explored in this work. When properly optimized, both filtering procedures provide satisfactory classification results for the airborne data. Missed detection rates of 8% or smaller for ethanol and false positive rates of at most 0.8% are realized. The optimization of filter design parameters, the starting interferogram point for filtering, and the length of the interferogram segments used in the pattern recognition is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.