IMPORTANCE Sustained reductions in low-density lipoprotein cholesterol (LDL-C) with lipid-lowering therapies that require frequent dosing are reliant on patient adherence, and poor adherence is associated with worse clinical outcomes.OBJECTIVE To determine whether inclisiran, a small interfering RNA, reduces mean LDL-C exposure with an infrequent dosing regimen. DESIGN, SETTING, AND PARTICIPANTS Prespecified analysis of a randomized, double-blind, placebo-controlled multicenter phase 2 clinical trial. Participants were followed up monthly for LDL-C levels and proprotein convertase subtilisin-kexin type 9 (PCSK9) measurements as well as safety until their LDL-C levels had returned to within 20% of their change from baseline (maximum 360 days). The study included patients with elevated LDL-C despite maximally tolerated statin therapy. Data were analyzed between January 11, 2016, and June 7, 2017.INTERVENTIONS One dose (200, 300, or 500 mg on day 1) or 2 doses (100, 200, or 300 mg on days 1 and 90) of inclisiran sodium or placebo. MAIN OUTCOMES AND MEASURESDuration of time to return to within 20% of change from baseline for LDL-C levels and time-averaged LDL-C reductions over 1 year.RESULTS At baseline, among the 501 participants, 65% were men (n = 326 of 501), mean age was 63 years, 6% had familial hypercholesterolemia (n = 28 of 501), and 69% had established ASCVD (n = 347 of 501). Baseline LDL-C was 128 mg/dL among 501 randomized participants. The percentage of participants who were followed up to day 360 because their LDL-C levels had not returned to within 20% of their change from baseline ranged from 48.3% to 65.0% for those receiving a single dose and between 55.9% and 83.1% of those receiving 2 doses, with similar effects observed for PCSK9. Time-averaged reduction in LDL-C levels over 1 year after a single dose ranged from 29.5% to 38.7% (P < .001 between groups) and from 29.9% to 46.4% (P < .001 between groups) for those who received 2 doses. The 2-dose 300-mg regimen produced the highest proportion of responders at day 360 and the greatest mean reduction in LDL-C over 1 year. Incidence of adverse events was similar through to 1 year. CONCLUSIONS AND RELEVANCETreatment with inclisiran resulted in durable reductions in LDL-C over 1 year. Inclisiran may offer a novel approach to LDL-C reduction with the convenience of infrequent dosing.
Low-density lipoprotein (LDL) is one of the principal risk factors for atherosclerosis. Circulating LDL particles can penetrate into the sub-endothelial space of arterial walls. These particles undergo oxidation and promote an inflammatory response, resulting in injury to the vascular endothelial wall. Persistent elevation of LDL-cholesterol (LDL-C) is linked to the progression of fatty streaks to lipid-rich plaque and thus atherosclerosis. LDL-C is a causal factor for atherosclerotic cardiovascular disease and lowering it is beneficial across a range of conditions associated with high risk of cardiovascular events. Therefore, all guidelines-recommended initiations of statin therapy for patients at high cardiovascular risk is irrespective of LDL-C. In addition, intensive LDL-C lowering therapy with statins has been demonstrated to result in a greater reduction of cardiovascular event risk in large clinical trials. However, many high-risk patients receiving statins fail to achieve the guideline-recommended reduction in LDL-C levels in routine clinical practice. Moreover, low levels of adherence and often high rates of discontinuation demand the need for further therapies. Ezetimibe has typically been used as a complement to statins when further LDL-C reduction is required. More recently, proprotein convertase subtilisin kexin 9 (PCSK9) has emerged as a novel therapeutic target for lowering LDL-C levels, with PCSK9 inhibitors offering greater reductions than feasible through the addition of ezetimibe. PCSK9 monoclonal antibodies have been shown to not only considerably lower LDL-C levels but also cardiovascular events. However, PCSK9 monoclonal antibodies require once- or twice-monthly subcutaneous injections. Further, their manufacturing process is expensive, increasing the cost of therapy. Therefore, several non-antibody treatments to inhibit PCSK9 function are being developed as alternative approaches to monoclonal antibodies. These include gene-silencing or editing technologies, such as antisense oligonucleotides, small interfering RNA, and the clustered regularly interspaced short palindromic repeats/Cas9 platform; small-molecule inhibitors; mimetic peptides; adnectins; and vaccination. In this review, we summarize the current knowledge base on the role of PCSK9 in lipid metabolism and an overview of non-antibody approaches for PCSK9 inhibition and their limitations. The subsequent development of alternative approaches to PCSK9 inhibition may give us more affordable and convenient therapeutic options for the management of high-risk patients.
H/M-SOD2 mice receiving EGCG have a lower mortality rate and exhibit less inflammation and a better preserved cardiac function and telomere biology.
BackgroundAn excessive inflammatory response after myocardial infarction (MI) increases myocardial injury. The toll‐like receptor (TLR)‐4 is activated by the recognition of endogenous ligands and is proinflammatory when there is myocardial tissue injury. The apoptosis inhibitor of the macrophage (AIM) is known to provoke an efflux of saturated free fatty acids (FFA) due to lipolysis, which causes inflammation via the TLR‐4 pathway. Therefore, this study investigated the hypothesis that AIM causes a proinflammatory response after MI.Methods and ResultsThe left anterior descending coronary artery was ligated to induce MI in both AIM‐knockout (AIM−/−) and wild‐type (WT) mice. After 3 days, the inflammatory response from activation of the TLR‐4/NFκB pathway was assessed, and infarct size was measured by staining with triphenyltetrazolium chloride. In addition, left ventricular remodeling was examined after 28 days. Although the area at risk was similar between AIM−/− and WT mice, the infarct size was significantly smaller in AIM−/− mice (P=0.02). The heart weight–to–body weight ratio and myocardial fibrosis were also decreased in the AIM−/− mice, and the 28‐day survival rate was improved (P<0.01). With the reduction of plasma FFA in AIM−/− mice, myocardial IRAK4 and NFκB activity were decreased (all P<0.05). Moreover, there was a reduction in myeloperoxidase activity and inducible nitric oxide synthase as part of the inflammatory response (P<0.01, P=0.03, respectively). Furthermore, NFκB DNA‐binding activation via TLR‐4, neutrophil infiltration, and inflammatory mediators were decreased in AIM−/− mice.ConclusionsThe deletion of AIM reduced the inflammatory response and infarct size and improved survival after myocardial infarction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.