α‐Galactosylceramides are glycosphingolipids that show promise in cancer immunotherapy. After presentation by CD1d, they activate natural killer T cells (NKT), which results in the production of a variety of pro‐inflammatory and immunomodulatory cytokines. Herein, we report the synthesis and biological evaluation of photochromic derivatives of KRN‐7000, the activity of which can be modulated with light. Based on established structure–activity relationships, we designed photoswitchable analogues of this glycolipid that control the production of pro‐inflammatory cytokines, such as IFN‐γ. The azobenzene derivative α‐GalACer‐4 proved to be more potent than KRN‐7000 itself when activated with 370 nm light. Photolipids of this type could improve our mechanistic understanding of cytokine production and could open new directions in photoimmunotherapy.
α-GalCer analogues that combine known Th1 polarizing C6''-modifications with a C-glycosidic linkage were synthesized. We employed a protecting group strategy that allowed the preparation of both saturated and unsaturated derivatives with variable C6''-substituents. Selected analogues demonstrate promising activity in mice. Interestingly, the introduction of a 6''-O-pyridinylcarbamoyl substituent to α-C-GalCer restores its antigenicity in human iNKT cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.