Ascorbate (AsA) is a major antioxidant and free-radical scavenger in plants. Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is crucial for AsA regeneration and essential for maintaining a reduced pool of AsA. To examine whether an overexpressed level of MDAR could minimize the deleterious effects of environmental stresses, we developed transgenic tobacco plants overexpressing Arabidopsis thaliana MDAR gene (AtMDAR1) in the cytosol. Incorporation of the transgene in the genome of tobacco plants was confirmed by PCR and Southern-blot analysis and its expression was confirmed by Northern- and Western-blot analyses. These transgenic plants exhibited up to 2.1-fold higher MDAR activity and 2.2-fold higher level of reduced AsA compared to non-transformed control plants. The transgenic plants showed enhanced stress tolerance in term of significantly higher net photosynthesis rates under ozone, salt and polyethylene glycol (PEG) stresses and greater PSII effective quantum yield under ozone and salt stresses. Furthermore, these transgenic plants exhibited significantly lower hydrogen peroxide level when tested under salt stress. These results demonstrate that an overexpressed level of MDAR properly confers enhanced tolerance against ozone, salt and PEG stress.
Accurate identification of aspermic Fasciola forms in Japan remains difficult because of their morphological variations. In order to characterize the forms genetically, nucleotide sequences of ribosomal internal transcribed spacer (ITS1 and ITS2) and mitochondrial cytochrome c oxidase I (COI) and NADH dehydrogenase I (NDI) genes in 34 liver flukes from 16 prefectures in Japan were analysed. Two major forms represented by Fsp 1 and Fsp 2 had sequences identical to or closely resembling those of F. hepatica and F. gigantica, respectively, in all the 4 DNA markers and were mainly distributed in northern and eastern-western parts of Japan, respectively. Fsp 1 and Fsp 2 would have been introduced into Japan with infected cattle of 2 distinct lineages via the Korean Peninsula and spread through limited parts of Japan (northern and eastern-western parts) together with the movement of each cattle lineage. The Japanese form (Fsp 1/2), which showed heterozygosity in ribosomal DNA and Fsp 2 haplotype in mitochondrial DNA, may have originated in interspecific cross hybridization between paternal F. hepatica and maternal F. gigantica.
Ascorbate (vitamin C) is a potent antioxidant protecting plants against oxidative damage imposed by environmental stresses such as ozone and drought. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) is one of the two important enzymes functioning in the regeneration of ascorbate (AsA). To examine the protective role of DHAR against oxidative stress, we developed transgenic tobacco plants overexpressing cytosolic DHAR gene from Arabidopsis thaliana. Incorporation of the transgene in the genome of tobacco plants was confirmed by polymerase chain reaction and Southern blot analysis, and its expression was confirmed by Northern and Western blot analyses. These transgenic plants exhibited 2.3–3.1 folds higher DHAR activity and 1.9–2.1 folds higher level of reduced AsA compared with non‐transformed control plants. The transgenic plants showed maintained redox status of AsA and exhibited an enhanced tolerance to ozone, drought, salt, and polyethylene glycol stresses in terms of higher net photosynthesis. In this study, we report for the first time that the elevation of AsA level by targeting DHAR overexpression in cytosol properly provides a significantly enhanced oxidative stress tolerance imposed by drought and salt.
ABSTRACT. Nucleotide sequences of ribosomal internal transcribed spacer (ITS1) and mitochondrial NADH dehydrogenase I (NDI) gene were analyzed to genetically characterize aspermic Fasciola forms in Korea. From the difference in ITS1 sequences, Korean flukes were divided into 3 haplotypes represented by Kor1, Kor2 and Kor1/2, which had nucleotides identical to F. hepatica, F. gigantica and those overlapped between the two species, respectively. NDI sequences also showed that Korean flukes could be classified into 3 distinct haplotypes (Kor1: F. hepatica-type, . The sequences of Kor1 and Kor2a were 100% identical to those of the haplotypes Fsp1and Fsp2, respectively, which are major Fasciola forms in Japan. These findings strongly suggest that aspermic Fasciola forms in Korea and Japan originated from same ancestors and have recently spread throughout both countries. KEY WORDS: Fasciola sp., haplotype, ITS1, Korea, NDI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.