Malaria is a complex parasitic disease, caused by Plasmodium spp. More than a century after the discovery of malaria parasites, this disease continues to pose a global public health problem and the pathogenesis of the severe forms of malaria remains incompletely understood. Extracellular vesicles (EVs), including exosomes and microvesicles, have been increasingly researched in the field of malaria in a bid to fill these knowledge gaps. EVs released from Plasmodium-infected red blood cells and other host cells during malaria infection are now believed to play key roles in disease pathogenesis and are suggested as vital components of the biology of Plasmodium spp. Malaria-derived EVs have been identified as potential disease biomarkers and therapeutic tools. In this review, key findings of malaria EV studies over the last 20 years are summarized and critically analysed. Outstanding areas of research into EV biology are identified. Unexplored EV research foci for the future that will contribute to consolidating the potential for EVs as agents in malaria prevention and control are proposed.
Malaria is caused by obligate intracellular parasites belonging to the genus Plasmodium. Red blood cells (RBCs) infected with different stages of Plasmodium spp. release extracellular vesicles (EVs). Extensive studies have recently shown that these EVs are involved in key aspects of the parasite’s biology and disease pathogenesis. However, they are yet to be fully characterized. The blood stages of Plasmodium spp., namely the rings, trophozoites and schizonts, are phenotypically distinct, hence, may induce the release of characteristically different EVs from infected RBCs. To gain insights into the biology and biogenesis of malaria EVs, it is important to characterize their biophysical and biochemical properties. By differential centrifugation, we isolated EVs from in vitro cultures of RBCs infected with different stages of Plasmodium falciparum. We performed a preliminary characterization of these EVs and observed that important EV markers were differentially expressed in EVs with different sedimentation properties as well as across EVs released from ring-, trophozoite- or schizont-infected RBCs. Our findings show that RBCs infected with different stages of malaria parasites release EVs with distinct protein expression profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.